
Simulink® Requirements™
Reference

R2018a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Requirements™ Reference
© COPYRIGHT 2017–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
September 2017 Online only New for Version 1.0 (Release 2017b)
March 2018 Online only Revised for Version 1.1 (Release 2018a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Functions — Alphabetical List
1

Classes — Alphabetical List
2

Methods — Alphabetical List
3

Block Reference
4

iii

Contents

Functions — Alphabetical List

1

slreq.clear
Clear requirements and links from memory

Syntax
slreq.clear()

Description
slreq.clear() clears all requirements and links loaded in memory and closes the
Requirements Editor, discarding all unsaved changes.

See Also
slreq.LinkSet | slreq.ReqSet

Introduced in R2018a

1 Functions — Alphabetical List

1-2

slreq.convertAnnotation
Convert annotations to requirement objects

Syntax
myReq = slreq.convertAnnotation(myAnnotation,myDestination)
myReq = slreq.convertAnnotation(myAnnotation,myDestination,Name,
Value)

Description
myReq = slreq.convertAnnotation(myAnnotation,myDestination) converts a
Simulink® or a Stateflow® annotation myAnnotation into a requirement myReq and
stores it in a destination entity myDestination.

myReq = slreq.convertAnnotation(myAnnotation,myDestination,Name,
Value) converts a Simulink or a Stateflow annotation myAnnotation into a requirement
myReq and stores it in a destination entity myDestination using additional options
specified by one or more Name, Value pair arguments.

Examples
Convert Simulink Annotation to Requirement
% Find all annotations in a Simulink model
allAnnotations = find_system('controller_Model', 'FindAll', ...
'on', 'type', 'annotation');

% Create a new requirements set
newReqSet = slreq.new('myNewReqSet');

% Convert one annotation into a requirement newReq
% and add it to newReqSet
newReq = slreq.convertAnnotation(allAnnotations(1), ...
newReqSet);

 slreq.convertAnnotation

1-3

Input Arguments
myAnnotation — Simulink or Stateflow annotation
Simulink.Annotation object

The annotation to be converted, specified as a Simulink.Annotation object.

myDestination — Converted annotation destination entity
slreq.Requirement object | slreq.ReqSet object

The destination entity for the converted annotation, specified either as an
slreq.Requirement or as an slreq.ReqSet object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'CreateLinks', true

CreateLinks — Option to create links
true (default) | false

Option to create links when converting annotations, specified as a Boolean value.

KeepAnnotation — Option to retain annotation
false (default) | true

Option to retain the annotation after conversion, specified as a Boolean value.

IgnoreCallback — Option to force annotation conversion
false (default) | true

Option to specify annotation conversion even if a callback function is specified in the
annotation, specified as a Boolean value.

ShowMarkup — Option to display requirements markup
true (default) | false

1 Functions — Alphabetical List

1-4

Option to display the Requirement markup after annotation conversion, specified as a
Boolean value.

Output Arguments
myReq — Requirement
slreq.Requirement object

The converted annotation, returned as an slreq.Requirement object.

See Also
slreq.ReqSet | slreq.Requirement

Introduced in R2018a

 slreq.convertAnnotation

1-5

slreq.createLink
Create traceable links

Syntax
myLink = slreq.createLink(src, dest)

Description
myLink = slreq.createLink(src, dest) creates an slreq.Link object myLink
that serves as a link between the source artifact src and the destination artifact dest.

Examples

Create Links
% Create a link between the current Simulink Object and a requirement
link1 = slreq.createLink(gcb, REQ)

link1 =

 Link with properties:

 Type: 'Implement'
 Description: 'Plant Specs'
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 02-Sep-2017 15:49:28
 CreatedBy: 'Jane Doe'
 ModifiedOn: 21-Oct-2017 11:34:12
 ModifiedBy: 'John Doe'
 Comments: [0×0 struct]

% Create a link between a requirement and the current Stateflow object
link2 = slreq.createLink(REQ, sfgco);

1 Functions — Alphabetical List

1-6

Input Arguments
src — Link source artifact
structure

The link source artifact, specified as a MATLAB® structure.

dest — Link destination artifact
structure

The link destination artifact, specified as a MATLAB structure.

Output Arguments
myLink — Link artifact
slreq.Link object

The link between src and dest, specified as an slreq.Link object.

See Also
slreq.Link | slreq.LinkSet

Introduced in R2018a

 slreq.createLink

1-7

slreq.editor
Open Requirements Editor

Syntax
slreq.editor()

Description
slreq.editor() opens the Requirements Editor user interface (UI) dialog box.

See Also
slreq.ReqSet

Introduced in R2018a

1 Functions — Alphabetical List

1-8

slreq.find
Find requirement, reference, and link set artifacts

Syntax
myArtifacts = slreq.find('Type',ArtifactType)
myArtifact = slreq.find('Type',ArtifactType,'PropertyName',
PropertyValue)

Description
myArtifacts = slreq.find('Type',ArtifactType) finds and returns all loaded
Simulink Requirements™ artifacts myArtifacts of the type specified by
ArtifactType.

myArtifact = slreq.find('Type',ArtifactType,'PropertyName',
PropertyValue) finds and returns a Simulink Requirements artifact myArtifact of the
type specified by ArtifactType matching the additional properties specified by
PropertyName and PropertyValue.

Examples

Find Requirements Sets
% Find all requirements sets

allReqSets = slreq.find('Type', 'ReqSet')

allReqSets =

 1×8 ReqSet array with properties:

 Description
 Name

 slreq.find

1-9

 Filename
 Revision
 Dirty
 CustomAttributeNames

% Find a requirements set with matching property values
myReqSet = slreq.find('Type', 'ReqSet', 'Name', 'My_Req_Set', 'Revision', 65)

myReqSet =

 ReqSet with properties:

 Description: ''
 Name: 'My_Req_Set'
 Filename: 'C:\MATLAB\My_Req_Set.slreqx'
 Revision: 65
 Dirty: 0
 CustomAttributeNames: {}

Find Requirements
% Find all requirements in all loaded requirements sets
allReqs = slreq.find('Type', 'Requirement')

allReqs =

 1×72 Requirement array with properties:

 Id
 Summary
 Keywords
 Description
 Rationale
 SID
 CreatedBy
 CreatedOn
 ModifiedBy
 ModifiedOn
 FileRevision
 Dirty
 Comments

% Find a requirement with matching property value
myReq = slreq.find('Type', 'Requirement', 'Id', '#19')

1 Functions — Alphabetical List

1-10

myReq =

 Requirement with properties:

 Id: '#19'
 Summary: 'Control Mode'
 Keywords: [0×0 char]
 Description: ''
 Rationale: ''
 SID: 19
 CreatedBy: 'Jane Doe'
 CreatedOn: 27-Feb-2017 10:15:38
 ModifiedBy: 'John Doe'
 ModifiedOn: 02-Aug-2017 15:18:55
 FileRevision: 52
 Dirty: 0
 Comments: [0×0 struct]

Find Referenced Requirements
% Find all referenced requirements in all loaded requirements sets
allRefs = slreq.find('Type', 'Reference')

allRefs =

 1×24 Reference array with properties:

 Keywords
 Artifact
 Id
 Summary
 Description
 SID
 Domain
 SynchronizedOn
 ModifiedOn

% Find a referenced requirement with matching property value
myRef = slreq.find('Type', 'Reference', 'Id', '#26')

myRef =

 Reference with properties:

 slreq.find

1-11

 Keywords: [0×0 char]
 Artifact: 'My_req_doc.docx'
 Id: '#26'
 Summary: 'Overview'
 Description: ''
 SID: 2
 Domain: 'linktype_rmi_word'
 SynchronizedOn: 25-Jul-2017 11:34:02
 ModifiedOn: 16-Aug-2017 13:01:55

Find Link Sets
% Find all loaded link sets

allLinkSets = slreq.find('Type', 'LinkSet')

allLinkSets =

 1×2 LinkSet array with properties:

 Description
 Filename
 Artifact
 Domain
 Revision
 Dirty

% Find a link set with matching property values
myLinkSet = slreq.find('Type', 'LinkSet', 'Domain', 'linktype_rmi_slreq')

myLinkSet =

 LinkSet with properties:

 Description: ''
 Filename: 'C:\MATLAB\My_Reqs.slmx'
 Artifact: 'C:\MATLAB\My_Reqs.slreqx'
 Domain: 'linktype_rmi_slreq'
 Revision: 2
 Dirty: 0

1 Functions — Alphabetical List

1-12

Input Arguments
ArtifactType — Simulink Requirements artifact type
'ReqSet' | 'Requirement' | 'Reference' | 'LinkSet'

The Simulink Requirements artifact to find.

Output Arguments
myArtifacts — Simulink Requirements artifact array
slreq.ReqSet array | slreq.Requirement array | slreq.Reference array |
slreq.LinkSet array

Simulink Requirements artifacts, returned as arrays of the respective data type.

myArtifact — Simulink Requirements artifact
slreq.ReqSet | slreq.Requirement | slreq.Reference | slreq.LinkSet

Simulink Requirements artifact, returned as the respective data type.

See Also
find | find | find | slreq.LinkSet | slreq.Reference | slreq.ReqSet |
slreq.Requirement

Introduced in R2018a

 slreq.find

1-13

slreq.generateReport
Generate report for requirements set

Syntax
myReportPath = slreq.generateReport(reqSetList, reportOpts)

Description
myReportPath = slreq.generateReport(reqSetList, reportOpts) generates a
report for the requirements sets specified by reqSetList using the options specified by
reportOpts and returns the path myReportPath to the report.

Examples

Generate Requirement Report
% Generate a requirement report in Microsoft® Word
% format for all loaded requirements sets

% Get default report generation options structure
myReportOpts = slreq.getReportOptions();

% Specify the generated report path and file name
myReportOpts.reportPath = 'L:\My_Project\Reqs_Report.docx';

% Generate the report for all loaded requirements sets
myReport = slreq.generateReport('all', myReportOpts);

Note To generate reports in PDF and HTML formats, specify a .pdf or a .html file
name as the reportPath value.

1 Functions — Alphabetical List

1-14

Input Arguments
reqSetList — Requirements set
character vector (default) | slreq.ReqSet object | array

Requirements sets for report generation. You can specify a single requirements set or an
array of requirements sets. To generate a report for all the loaded requirements sets,
specify 'all' as the reqSetList value. If you do not specify a value for reqSetList,
'all' is used as default.

reportOpts — Report generation options
structure

Report generation options specified as a MATLAB structure. If reportOpts is not
specified, the report is generated using the default options specified in
slreq.getReportOptions.

 slreq.generateReport

1-15

Options

Fields Data Type Description
reportPath character vector Generated report path.
templatePath character vector Report template path.
titleText character vector Report title.
authors character vector Report authors.
includes.toc Boolean Option to include table of

contents in your report.
includes.links Boolean Option to include

requirements links in your
report.

includes.rationale Boolean Option to include
requirements rationale in
your report.

includes.customAttrib
utes

Boolean Option to include
requirements set custom
attributes in your report

includes.comments Boolean Option to include
requirement comments in
your report.

includes.implementati
onStatus

Boolean Option to include
requirement implementation
status data in your report.

includes.verification
Status

Boolean Option to include
requirement verification
status data in your report.

includes.keywords Boolean Option to include
requirement implementation
status data in your report.

includes.emptySection
s

Boolean Option to include empty
sections in your report.

includes.revision Boolean Option to include
requirement revision
information in your report.

1 Functions — Alphabetical List

1-16

Output Arguments
myReportPath — Generated report path
character vector

The file path for the generated report, specified as a character vector.

See Also
slreq.getReportOptions

Topics
“Report Requirements Information”

Introduced in R2018a

 slreq.generateReport

1-17

slreq.getReportOptions
Get default report generation options

Syntax
myOptions = slreq.getReportOptions()

Description
myOptions = slreq.getReportOptions() returns a structure with the default
options for generating reports for requirements sets.

Examples
Get Report Generation Options
myOptions = slreq.getReportOptions()

myOptions =

 struct with fields:

 reportPath: 'L:\slreqrpt_20170826.docx'
 templatePath: 'C:\matlab\toolbox\slrequirements\slrequirements\+slreq\+report\templates\slreqrpttemplate.dotx'
 titleText: ''
 authors: 'Jane Doe'
 includes: [1×1 struct]

Output Arguments
myOptions — Report generation options
structure

Default options for report generation, returned as a MATLAB structure.

1 Functions — Alphabetical List

1-18

Options

Fields Data Type Description
reportPath character vector Generated report path.
templatePath character vector Report template path.
titleText character vector Report title.
authors character vector Report authors.
includes.toc Boolean Option to include table of

contents in your report.
includes.links Boolean Option to include

requirements links in your
report.

includes.linkGroup character vector Option to group links by
artifact or by link type.

includes.rationale Boolean Option to include
requirements rationale in
your report.

includes.customAttrib
utes

Boolean Option to include
requirements set custom
attributes in your report

includes.comments Boolean Option to include
requirement comments in
your report.

includes.implementati
onStatus

Boolean Option to include
requirement implementation
status data in your report.

includes.verification
Status

Boolean Option to include
requirement verification
status data in your report.

includes.keywords Boolean Option to include
requirement implementation
status data in your report.

includes.emptySection
s

Boolean Option to include empty
sections in your report.

 slreq.getReportOptions

1-19

Fields Data Type Description
includes.revision Boolean Option to include

requirement revision
information in your report.

See Also
slreq.generateReport

Introduced in R2018a

1 Functions — Alphabetical List

1-20

slreq.import
Import requirements from external documents

Syntax
slreq.import(docPath)
[refCount, reqSetFilePath, reqSetObj] = slreq.import(docPath)
slreq.import(docType)
slreq.import(docPath, Name, Value)

Description
slreq.import(docPath) imports requirements content as referenced requirements
from an external document located at docPath. The imported requirements are saved in
a new requirements set with the same name as the external document. Use this import
method to import requirements content from Microsoft Office documents and from files in
the Requirements Interchange Format (.reqif and .reqifz).

[refCount, reqSetFilePath, reqSetObj] = slreq.import(docPath) imports
requirements content as referenced requirements from an external document located at
docPath and returns the number of references imported refCount. The imported
requirements are saved in the requirements set reqSetObj located at reqSetFilePath
with the same name as the external document.

slreq.import(docType) imports requirements content as referenced requirements
from an external document that is of a registered document type docType. The imported
requirements are saved in a new requirements set with the same name as the external
document.

slreq.import(docPath, Name, Value) imports requirements content as referenced
requirements from an external document located at docPath with options specified by
one or more Name, Value pair arguments.

 slreq.import

1-21

Examples

Import Referenced Requirements
% Import referenced requirements from Microsoft Office documents
slreq.import('Specification002.docx');
slreq.import('D:/Projects/Requirements/Safety321.xlsx');

% Import referenced requirements from an IBM Rational DOORS Module
slreq.import('linktype_rmi_doors');

Input Arguments
docPath — Document location
character vector

The file path of the external requirements document, specified as a character vector.

docType — Document type
character vector

The document type of the external requirements document, specified as a character
vector.
Example: 'linktype_rmi_doors'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'ReqSet', 'design_specs.slreqx'

AsReference — Option to import as references
true (default) | false

Option to import requirements as references, specified as a Boolean value. The value
false is supported only for import from Microsoft Office documents.

1 Functions — Alphabetical List

1-22

ReqSet — Requirements Set
character vector

The name for the existing requirements set that you import requirements into, specified
as a character vector.
Example: 'ReqSet', 'My_Requirements_Set'

RichText — Option to import rich text requirements
false (default) | true

Option to import requirements as rich text, specified as a Boolean value.
Example: 'RichText', true

bookmarks — Option to import requirements using bookmarks
false | true

Option to import requirements content using user-defined bookmarks. This value is true
by default for Microsoft Word documents and false by default for Microsoft Excel®
spreadsheets.
Example: 'bookmarks', false

match — Regular expression pattern
character vector

Regular expression pattern for ID search in Microsoft Office documents.
Example: 'match', '^REQ\d+'

attributes — Attribute names
cell array

Attribute names to import, specified as a cell array.

Note When importing requirements from a Microsoft Excel spreadsheet, the length of
this cell array must match the number of columns specified for import using the
'columns' argument.

Example: 'attributes', {'Test Status', 'Test Procedure'}

 slreq.import

1-23

Pairs for Microsoft Excel Spreadsheets

columns — Range of columns
double array

Range of columns to import, specified as a double array.
Example: 'columns', [1 6]

rows — Range of rows
double array

Range of rows to import, specified as a double array.
Example: 'rows', [3 35]

idColumn — ID Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the ID field in
your requirements set, specified as a double.
Example: 'idColumn', 1

summaryColumn — Summary Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Summary
field in your requirements set, specified as a double.
Example: 'summaryColumn', 4

keywordsColumn — Keywords Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Keywords
field in your requirements set, specified as a double.
Example: 'keywordsColumn', 3

descriptionColumn — Description Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the
Description field in your requirements set, specified as a double.

1 Functions — Alphabetical List

1-24

Example: 'descriptionColumn', 2

rationaleColumn — Rationale Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Rationale
field in your requirements set, specified as a double.
Example: 'rationaleColumn', 5

Output Arguments
refCount — Imported referenced requirements count
double

Number of referenced requirements imported, returned as a double.

reqSetFilePath — Requirements set file path
character vector

The file path of the requirements set to which you import requirements to, returned as a
character vector.

reqSetObj — Requirements set object
slreq.ReqSet object

Handle to the requirements set to which you import requirements to, returned as an
slreq.ReqSet object.

See Also
createReferences | slreq.Reference

Introduced in R2018a

 slreq.import

1-25

slreq.load
Load requirements/link set

Syntax
myReqSet = slreq.load(reqSetArtifact)
myLinkSet = slreq.load(linkSetArtifact)

Description
myReqSet = slreq.load(reqSetArtifact) loads a requirements set myReqSet into
memory.

myLinkSet = slreq.load(linkSetArtifact) loads a link set myLinkSet into
memory.

Input Arguments
reqSetArtifact — Requirements set to load
character vector

The requirements set to load, specified as a character vector.

linkSetArtifact — Link set artifact name
character vector

The link set to load, specified as a character vector.

Output Arguments
myReqSet — Loaded requirements set
slreq.ReqSet object

The requirements set that was loaded, returned as an slreq.ReqSet object.

1 Functions — Alphabetical List

1-26

myLinkSet — Loaded link set
slreq.LinkSet object

The link set that was loaded, returned as an slreq.LinkSet object.

See Also
slreq.LinkSet | slreq.ReqSet

Introduced in R2018a

 slreq.load

1-27

slreq.new
Create requirements set

Syntax
newReqSet = slreq.new(reqSetName)
newReqSet = slreq.new(reqSetPath)

Description
newReqSet = slreq.new(reqSetName) creates a requirements set newReqSet with
the name specified by reqSetName in the current working folder.

newReqSet = slreq.new(reqSetPath) creates a requirements set newReqSet in the
folder specified by reqSetPath.

Note The folder specified by reqSetPath must exist on disk.

Examples

Create Requirements Set
% Create requirements set in current working folder
myReqSet1 = slreq.new('New_Req_Set_1')

myReqSet1 =

 ReqSet with properties:

 Description: ''
 Name: 'New_Req_Set_1'
 Filename: 'L:\New_Req_Set_1.slreqx'
 Revision: 1
 Dirty: 1

1 Functions — Alphabetical List

1-28

 CustomAttributeNames: {}
 CreatedBy: 'John Doe'
 CreatedOn: 18-Feb-2008 20:54:52
 ModifiedBy: 'Jane Doe'
 ModifiedOn: 20-Jan-2016 12:44:12

% Create requirements set in a different directory
myReqSet2 = slreq.new('L:\Reqs_Work\New_Req_Set_2')

myReqSet2 =

 ReqSet with properties:

 Description: ''
 Name: 'New_Req_Set_2'
 Filename: 'L:\Reqs_Work\New_Req_Set_2.slreqx'
 Revision: 1
 Dirty: 1
 CustomAttributeNames: {}
 CreatedBy: 'Jane Doe'
 CreatedOn: 11-Jan-2009 11:33:01
 ModifiedBy: 'John Doe'
 ModifiedOn: 18-Jan-2018 09:07:32

Input Arguments
reqSetName — Requirements set name
character vector

Name of the requirements set to create, specified as a character vector.

reqSetPath — Requirements set path
character vector

Folder to create requirements set in, specified as a character vector.

Output Arguments
newReqSet — Created requirements set
slreq.ReqSet object

 slreq.new

1-29

The created requirements set, specified as an slreq.ReqSet object.

See Also
slreq.ReqSet

Introduced in R2018a

1 Functions — Alphabetical List

1-30

slreq.open
Open requirements set

Syntax
myReqSet = slreq.open(ReqSetFilePath)
myReqSet = slreq.open(ReqSetName)

Description
myReqSet = slreq.open(ReqSetFilePath) loads the requirements set at
ReqSetFilePath into memory. If the requirements set is already loaded into memory,
the Requirements Editor opens. If the requirements set is already loaded and the
Requirements Editor is open, the specified requirements set is selected in the
Requirements Editor.

myReqSet = slreq.open(ReqSetName) loads the requirements set named
ReqSetName if it can be located.

Input Arguments
ReqSetFilePath — Requirements set file path
character vector

The full file path of the requirements set to be loaded, specified as a character vector.

ReqSetName — Requirements set name
character vector

The name of the requirements set to be loaded, specified as a character vector.

 slreq.open

1-31

Output Arguments
myReqSet — Requirements set object
slreq.ReqSet object

Handle to the requirements set you open, returned as an slreq.ReqSet object.

See Also
slreq.ReqSet

Introduced in R2018a

1 Functions — Alphabetical List

1-32

rmi
Interact programmatically with Requirements Management Interface

Syntax
reqlinks = rmi('createEmpty')
reqlinks = rmi('get', model)
reqlinks = rmi('get', sig_builder, group_idx)
rmi('set', model, reqlinks)
rmi('set', sig_builder, reqlinks, group_idx)
rmi('cat', model, reqlinks)
cnt = rmi('count', object)
rmi('clearAll', object)
rmi('clearAll', object, 'deep')
rmi('clearAll', object, 'noprompt')
rmi('clearAll', object, 'deep', 'noprompt')

cmdStr = rmi('navCmd', object)
[cmdStr, titleStr] = rmi('navCmd', object)
object = rmi('guidlookup', model, guidStr)
rmi('highlightModel', object)
rmi('unhighlightModel', object)
rmi('view', object, index)
dialog = rmi('edit', object)
guidStr = rmi('guidget', object)

rmi('report', model)
rmi('report', matlabFilePath)
rmi('report', dictionaryFile)
rmi('projectreport')

rmi setup
rmi register linktypename
rmi unregister linktypename
rmi linktypelist

number_problems = rmi('checkdoc')

 rmi

1-33

number_problems = rmi('checkdoc', docName)
rmi('check', matlabFilePath)
rmi('check', dictionaryFile)

rmi('doorssync', model)

rmi('setDoorsLabelTemplate', template)
template = rmi('getDoorsLabelTemplate')
label = rmi('doorsLabel', moduleID, objectID)
totalModifiedLinks = rmi('updateDoorsLabels', model)

Description
reqlinks = rmi('createEmpty') creates an empty instance of the requirement links
data structure.

reqlinks = rmi('get', model) returns the requirement links data structure for
model.

reqlinks = rmi('get', sig_builder, group_idx) returns the requirement links
data structure for the Signal Builder group specified by the index group_idx.

rmi('set', model, reqlinks) sets reqlinks as the requirements links for model.

rmi('set', sig_builder, reqlinks, group_idx) sets reqlinks as the
requirements links for the signal group group_idx in the Signal Builder block
sig_builder.

rmi('cat', model, reqlinks) adds the requirements links in reqlinks to existing
requirements links for model.

cnt = rmi('count', object) returns the number of requirements links for object.

rmi('clearAll', object) deletes all requirements links for object.

rmi('clearAll', object, 'deep') deletes all requirements links in the model
containing object.

rmi('clearAll', object, 'noprompt') deletes all requirements links for object
and does not prompt for confirmation.

1 Functions — Alphabetical List

1-34

rmi('clearAll', object, 'deep', 'noprompt') deletes all requirements links in
the model containing object and does not prompt for confirmation.

cmdStr = rmi('navCmd', object) returns the MATLAB command cmdStr used to
navigate to object.

[cmdStr, titleStr] = rmi('navCmd', object) returns the MATLAB command
cmdStr and the title titleStr that provides descriptive text for object.

object = rmi('guidlookup', model, guidStr) returns the object name in model
that has the globally unique identifier guidStr.

rmi('highlightModel', object) highlights all of the objects in the parent model of
object that have requirement links.

rmi('unhighlightModel', object) removes highlighting of objects in the parent
model of object that have requirement links.

rmi('view', object, index) accesses the requirement numbered index in the
requirements document associated with object.

dialog = rmi('edit', object) displays the Requirements dialog box for object
and returns the handle of the dialog box.

guidStr = rmi('guidget', object) returns the globally unique identifier for
object. A globally unique identifier is created for object if it lacks one.

rmi('report', model) generates a Requirements Traceability report in HTML format
for model.

rmi('report', matlabFilePath) generates a Requirements Traceability report in
HTML format for the MATLAB code file specified by matlabFilePath.

rmi('report', dictionaryFile) generates a Requirements Traceability report in
HTML format for the Simulink data dictionary specified by dictionaryFile.

rmi('projectreport') generates a Requirements Traceability report in HTML format
for the current Simulink Project. The master page of this report has HTTP links to reports
for each project item that has requirements traceability associations. For more
information, see “Create Requirements Traceability Report for Simulink Project”.

rmi setup configures RMI for use with your MATLAB software and installs the interface
for use with the IBM® Rational® DOORS® software.

 rmi

1-35

rmi register linktypename registers the custom link type specified by the function
linktypename. For more information, see “Custom Link Type Registration”.

rmi unregister linktypename removes the custom link type specified by the
function linktypename. For more information, see “Custom Link Type Registration”.

rmi linktypelist displays a list of the currently registered link types. The list
indicates whether each link type is built-in or custom, and provides the path to the
function used for its registration.

number_problems = rmi('checkdoc') checks validity of links to Simulink from a
requirements document in Microsoft Word, Microsoft Excel, or IBM Rational DOORS. It
prompts for the requirements document name, returns the total number of problems
detected, and opens an HTML report in the MATLAB Web browser. For more information,
see “Validate Requirements Links in a Requirements Document”.

number_problems = rmi('checkdoc', docName) checks validity of links to
Simulink from the requirements document specified by docName. It returns the total
number of problems detected and opens an HTML report in the MATLAB Web browser.
For more information, see “Validate Requirements Links in a Requirements Document”.

rmi('check', matlabFilePath) checks consistency of traceability links associated
with MATLAB code lines in the .m file matlabFilePath, and opens an HTML report in
the MATLAB Web browser.

rmi('check', dictionaryFile) checks consistency of traceability links associated
with the Simulink data dictionary dictionaryFile, and opens an HTML report in the
MATLAB Web browser.

rmi('doorssync', model) opens the DOORS synchronization settings dialog box,
where you can customize the synchronization settings and synchronize your model with
an open project in an IBM Rational DOORS database.

rmi('setDoorsLabelTemplate', template) specifies a new custom template for
labels of requirements links to IBM Rational DOORS. The default label template contains
the section number and object heading for the DOORS requirement link target. To revert
the link label template back to the default, enter rmi('setDoorsLabelTemplate',
'') at the MATLAB command prompt.

template = rmi('getDoorsLabelTemplate') returns the currently specified custom
template for labels of requirements links to IBM Rational DOORS.

1 Functions — Alphabetical List

1-36

label = rmi('doorsLabel', moduleID, objectID) generates a label for the
requirements link to the IBM Rational DOORS object specified by objectID in the
DOORS module specified by moduleID, according to the current template.

totalModifiedLinks = rmi('updateDoorsLabels', model) updates all IBM
Rational DOORS requirements links labels in model according to the current template.

Examples

Requirements Links Management in Example Model

Get a requirement associated with a block in the slvnvdemo_fuelsys_htmreq model,
change its description, and save the requirement back to that block. Define a new
requirement link and add it to the existing requirements links in the block.

Get requirement link associated with the Airflow calculation block in the
slvnvdemo_fuelsys_htmreq example model.

slvnvdemo_fuelsys_htmreq;
blk_with_req = ['slvnvdemo_fuelsys_htmreq/fuel rate' 10 'controller/...
 Airflow calculation'];
reqts = rmi('get', blk_with_req);

Change the description of the requirement link.

reqts.description = 'Mass airflow estimation';

Save the changed requirement link description for the Airflow calculation block.

rmi('set', blk_with_req, reqts);

Create new requirement link to example document fuelsys_requirements2.htm.

new_req = rmi('createempty');
new_req.doc = 'fuelsys_requirements2.htm';
new_req.description = 'A new requirement';

Add new requirement link to existing requirements links for the Airflow calculation block.

rmi('cat', blk_with_req, new_req);

 rmi

1-37

Requirements Traceability Report for Example Model

Create HTML report of requirements traceability data in example model.

Create an HTML requirements report for the slvnvdemo_fuelsys_htmreq example
model.

rmi('report', 'slvnvdemo_fuelsys_htmreq');

The MATLAB Web browser opens, showing the report.

Labels for Requirements Links to IBM Rational DOORS

Specify a new label template for links to requirements in DOORS, and update labels of all
DOORS requirements links in your model to fit the new template.

Specify a new label template for requirements links to IBM Rational DOORS so that new
links to DOORS objects are labeled with the corresponding module ID, object absolute
number, and the value of the ‘Backup’ attribute.

rmi('setDoorsLabelTemplate', '%m:%n [backup=%<Backup>]');

Specify a new label template for requirements links to IBM Rational DOORS and set the
maximum label length to (for example) 200 characters.

rmi('setDoorsLabelTemplate', '%h %200');

Update existing DOORS requirements link labels to match the new specified template in
your model example_model. When updating labels, DOORS must be running and all
linked modules must be accessible for reading.

rmi('updateDoorsLabels', example_model);

Input Arguments
model — Simulink or Stateflow model with which requirements can be associated
name | handle

Simulink or Stateflow model with which requirements can be associated, specified as a
character vector or handle.

1 Functions — Alphabetical List

1-38

Example: 'slvnvdemo_officereq'
Data Types: char

object — Model object with which requirements can be associated
name | handle

Model object with which requirements can be associated, specified as a character vector
or handle.
Example: 'slvnvdemo_fuelsys_htmreq/fuel rate controller/Airflow
calculation'

Data Types: char

sig_builder — Signal Builder block containing signal group with requirements
traceability associations
name | handle

Signal Builder block containing signal group with requirements traceability associations,
specified as a character vector or handle.
Data Types: char

group_idx — Signal Builder group index
integer

Signal Builder group index, specified as a scalar.
Example: 2
Data Types: char

matlabFilePath — MATLAB code file with requirements traceability associations
path

MATLAB code file with requirements traceability associations, specified as the path to the
file.
Example:
Data Types: char

dictionaryFile — Simulink data dictionary with requirements traceability
associations
character vector

 rmi

1-39

Simulink data dictionary with requirements traceability associations, specified as a
character vector containing the file name and, optionally, path of the dictionary.
Example:
Data Types: char

guidStr — Globally unique identifier for model object
character vector

Globally unique identifier for model object object, specified as a character vector.
Example: GIDa_59e165f5_19fe_41f7_abc1_39c010e46167
Data Types: char

index — Index number of requirement linked to model object
integer

Index number of requirement linked to model object, specified as an integer.

docName — Requirements document in external application
file name | path

Requirements document in external application, specified as a character vector that
represents one of the following:

• IBM Rational DOORS module ID.
• path to Microsoft Word requirements document.
• path to Microsoft Excel requirements document.

For more information, see “Validate Requirements Links in a Requirements Document”.

label — Label for links to requirements in IBM Rational DOORS
character vector
Example:
Data Types: char

template — Template label for links to requirements in IBM Rational DOORS
character vector

Template label for links to requirements in IBM Rational DOORS, specified as a character
vector.

1 Functions — Alphabetical List

1-40

You can use the following format specifiers to include the associated DOORS information
in your requirements links labels:

%h Object heading
%t Object text
%p Module prefix
%n Object absolute number
%m Module ID
%P Project name
%M Module name
%U DOORS URL
%<ATTRIBUTE_NAME> Other DOORS attribute you specify

Example: '%m:%n [backup=%<Backup>]'
Data Types: char

moduleID — IBM Rational DOORS module
DOORS module ID

IBM Rational DOORS module, specified as the unique DOORS module ID.
Example:
Data Types: char

objectID — IBM Rational DOORS object
DOORS object ID

IBM Rational DOORS object in the DOORS module moduleID, specified as the locally
unique DOORS ID.
Example:
Data Types: char

Output Arguments
reqlinks — Requirement links data
struct

 rmi

1-41

Requirement links data, returned as a structure array with the following fields:

doc Character vector identifying requirements document
id Character vector defining location in requirements document. The

first character specifies the identifier type:

First
Character

Identifier Example

? Search text, the first
occurrence of which is
located in requirements
document

'?Requirement 1'

@ Named item, such as
bookmark in a Microsoft
Word file or an anchor in an
HTML file

'@my_req'

Page or item number '#21'
> Line number '>3156'
$ Worksheet range in a

spreadsheet
'$A2:C5'

linked Boolean value specifying whether the requirement link is accessible
for report generation and highlighting:
1 (default). Highlight model object and include requirement link in
reports.
0

description Character vector describing the requirement
keywords Optional character vector supplementing description
reqsys Character vector identifying the link type registration name;

'other' for built-in link types

cmdStr — Command used to navigate to model object
character vector

Command used to navigate to model object object, returned as a character vector.
Example: rmiobjnavigate('slvnvdemo_fuelsys_officereq.slx',
'GIDa_59e165f5_19fe_41f7_abc1_39c010e46167');

1 Functions — Alphabetical List

1-42

titleStr — Textual description of model object with requirements links
character vector

Textual description of model object with requirements links, returned as a character
vector.
Example: slvnvdemo_fuelsys_officereq/.../Airflow calculation/Pumping
Constant (Lookup2D)

guidStr — Globally unique identifier for model object
character vector

Globally unique identifier for model object object, returned as a character vector.
Example: GIDa_59e165f5_19fe_41f7_abc1_39c010e46167

dialog — Requirements dialog box for model object
handle

Requirements dialog box for model object object, returned as a handle to the dialog box.

number_problems — Total count of invalid links detected in external document
integer

Total count of invalid links detected in external document docName.

For more information, see “Validate Requirements Links in a Requirements Document”.

totalModifiedLinks — Total count of DOORS requirements links updated with
new label template
integer

Total count of DOORS requirements links updated with new label template.

See Also
rmipref | rmiobjnavigate | rmidocrename | rmitag | rmimap.map |
RptgenRMI.doorsAttribs

Introduced in R2006b

 rmi

1-43

rmidata.export
Move requirements traceability data to external .req file

Syntax
[total_linked,total_links] = rmidata.export
[total_linked,total_links] = rmidata.export(model)

Description
[total_linked,total_links] = rmidata.export moves requirements traceability
data associated with the current Simulink model to an external file named
model_name.req. rmidata.export saves the file in the same folder as the model.
rmidata.export deletes the requirements traceability data stored in the model and
saves the modified model.

[total_linked,total_links] = rmidata.export(model) moves requirements
traceability data associated with model to an external file named model_name.req.
rmidata.export saves the file in the same folder as model. rmidata.export deletes
the requirements traceability data stored in the model and saves the modified model.

Input Arguments
model

Name or handle of a Simulink model

Output Arguments
total_linked

Integer indicating the number of objects in the model that have linked requirements

1 Functions — Alphabetical List

1-44

total_links

Integer indicating the total number of requirements links in the model

Examples
Move the requirements traceability data from the slvnvdemo_fuelsys_officereq
model to an external file:

rmidata.export('slvnvdemo_fuelsys_officereq');

See Also
rmi | rmidata.save | rmimap.map

Topics
“Requirements Link Storage”

Introduced in R2011b

 rmidata.export

1-45

rmimap.map
Associate externally stored requirements traceability data with model

Syntax
rmimap.map(model,reqts_file)
rmimap.map(model,'undo')
rmimap.map(model,'clear')

Description
rmimap.map(model,reqts_file) associates the requirements traceability data from
reqts_file with the Simulink model model.

rmimap.map(model,'undo') removes from the .slmx file associated with model the
requirements traceability data that was most recently saved in the .slmx file.

rmimap.map(model,'clear') removes from the .slmx file associated with model all
requirements traceability data.

Input Arguments
model

Name, handle, or full path for a Simulink model

reqts_file

Full path to the .slmx file that contains requirements traceability data for the model

Alternatives
To load a file that contains requirements traceability data for a model:

1 Functions — Alphabetical List

1-46

1 Open the model.
2 Select Analysis > Requirements > Load Links.

Note The Load Links menu item appears only when your model is configured to
store requirements data externally. To specify external storage of requirements data
for your model, in the Requirements Settings dialog box under Storage > Default
storage location for requirements links data, select Store externally (in a
separate *.slmx file).

3 Browse to the .slmx file that contains the requirements links.
4 Click OK.

Examples
Associate an external requirements traceability data file with a Simulink model. After
associating the information with the model, view the objects with linked requirements by
highlighting the model.

open_system('slvnvdemo_powerwindowController');
reqFile = fullfile(matlabroot, 'toolbox', 'slvnv', ...
 'rmidemos', 'powerwin_reqs', ...
 'slvnvdemo_powerwindowRequirements.slmx');
rmimap.map('slvnvdemo_powerwindowController', reqFile);
rmi('highlightModel', 'slvnvdemo_powerwindowController');

To clear the requirements you just associated with that model, run this rmimap.map
command:

rmimap.map('slvnvdemo_powerwindowController','clear');

See Also
rmi | rmidata.save | rmidata.export

Topics
“Requirements Link Storage”

Introduced in R2015a

 rmimap.map

1-47

rmidata.save
Save requirements traceability data in external .req file

Syntax
rmidata.save(model)

Description
rmidata.save(model) saves requirements traceability data for a model in an
external .req file. The model must be configured to store requirements traceability data
externally. This function is equivalent to Analysis > Requirements > Save Links in the
Simulink Editor.

Examples

Create New Requirement Link and Save Externally

Add a requirement link to an existing example model, and save the model requirements
traceability data in an external file.

Open the example model, slvnvdemo_powerwindowController.

open_system('slvnvdemo_powerwindowController');

Specify that the model store requirements data externally.

rmipref('StoreDataExternally',1);

Create a new requirements link structure.

newReqLink = rmi('createEmpty');
newReqLink.description = 'newReqLink';

1 Functions — Alphabetical List

1-48

Specify the requirements document that you want to link to from the model. In this case,
an example requirements document is provided.

newReqLink.doc = [matlabroot '\toolbox\slvnv\rmidemos\' ...
 'powerwin_reqs\PowerWindowSpecification.docx'];

Specify the text of the requirement within the document to which you want to link.

newReqLink.id = '?passenger input consists of a vector' ...
 'with three elements';

Specify that the new requirements link that you created be attached to the Mux4 block of
the slvnvdemo_powerwindowController example model.

rmi('set', 'slvnvdemo_powerwindowController/Mux4', newReqLink);

Save the new requirement link that you just created in an external .req file associated
with the model.

rmidata.save('slvnvdemo_powerwindowController');

This function is equivalent to the Simulink Editor option Analysis > Requirements >
Save Links.

To highlight the Mux4 block, turn on requirements highlighting for the
slvnvdemo_powerwindowController example model.

rmi('highlightModel', 'slvnvdemo_powerwindowController');

You can test your requirements link by right-clicking the Mux4 block. In the context
menu, select Requirements > 1. “newReqLink”.

Close the example model.

close_system('slvnvdemo_powerwindowController', 0);

You are not prompted to save unsaved changes because you saved the requirements link
data outside the model file. The model file remains unchanged.

Input Arguments
model — Name or handle of model with requirements links
character vector | handle

 rmidata.save

1-49

Name of model with requirements links, specified as a character vector, or handle to
model with requirements links. The model must be loaded into memory and configured to
store requirements traceability data externally.

If you have a new model with no existing requirements links, configure it for external
storage as described in “Requirements Link Storage”. You can also use the rmipref
command to specify storage settings.

If you have an existing model with internally stored requirements traceability data,
convert that data to external storage as described in “Move Internally Stored
Requirements Links to External Storage”. You can also use the rmidata.export
command to convert existing requirements traceability data to external storage.
Example: 'slvnvdemo_powerwindowController'
Example: get_param(gcs,'Handle')

See Also
rmimap.map | rmidata.export

Topics
“Requirements Link Storage”

Introduced in R2013b

1 Functions — Alphabetical List

1-50

rmidocrename
Update model requirements document paths and file names

Syntax
rmidocrename(model_handle, old_path, new_path)
rmidocrename(model_name, old_path, new_path)

Description
rmidocrename(model_handle, old_path, new_path) collectively updates the links
from a Simulink model to requirements files whose names or locations have changed.
model_handle is a handle to the model that contains links to the files that you have
moved or renamed. old_path is a character vector that contains the existing full or
partial file or path name. new_path is a character vector with the new full or partial file
or path name.

rmidocrename(model_name, old_path, new_path) updates the links to
requirements files associated with model_name. You can pass rmidocrename a model
handle or a model file name.

When using the rmidocrename function, make sure to enter specific character vectors
for the old document name fragments so that you do not inadvertently modify other links.

Examples
For the current Simulink model, update all links to requirements files that contain the
character vector 'project_0220', replacing them with 'project_0221':
rmidocrename(gcs, 'project_0220', 'project_0221')
Processed 6 objects with requirements, 5 out of 13 links were modified.

 rmidocrename

1-51

Alternatives
To update the requirements links one at a time, for each model object that has a link:

1 For each object with requirements, open the Requirements Traceability Link Editor
by right-clicking and selecting Requirements Traceability > Open Link Editor.

2 Edit the Document field for each requirement that points to a moved or renamed
document.

3 Click Apply to save the changes.

See Also
rmi

Introduced in R2009b

1 Functions — Alphabetical List

1-52

rmiobjnavigate
Navigate to model objects using unique Requirements Management Interface identifiers

Syntax
rmiobjnavigate(modelPath, guId)
rmiobjnavigate(modelPath, guId, grpNum)

Description
rmiobjnavigate(modelPath, guId) navigates to and highlights the specified object
in a Simulink model.

rmiobjnavigate(modelPath, guId, grpNum) navigates to the signal group number
grpNum of a Signal Builder block identified by guId in the model modelPath.

Input Arguments
modelPath

A full path to a Simulink model file, or a Simulink model file name that can be resolved on
the MATLAB path.

guId

A unique identifier that the RMI uses to identify a Simulink or Stateflow object.

grpNum

Integer indicating a signal group number in a Signal Builder block

 rmiobjnavigate

1-53

Examples
Open the slvnvdemo_fuelsys_officereq example model and get the unique identifier
for the MAP Sensor block:
% Open example model
slvnvdemo_fuelsys_officereq;
% Get the Ssession Independent Identifier of the MAP Sensor Block
targetSID = Simulink.ID.getSID('slvnvdemo_fuelsys_officereq/MAP sensor');

Navigate to the MAP Sensor block using rmiobjnavigate and the unique identifier
returned in the previous step:
% Split targetSID into two components
[targetModel, targetObj] = strtok(targetSID,':');
% Navigate to the MAP sensor using the model name and model guID
rmiobjnavigate(targetModel, targetObj)

See Also
rmi

Topics
“Use the rmiobjnavigate Function”

Introduced in R2010b

1 Functions — Alphabetical List

1-54

rmipref
Get or set RMI preferences stored in prefdir

Syntax
rmipref

currentVal = rmipref(prefName)

previousVal = rmipref(Name,Value)

Description
rmipref returns list of Name,Value pairs corresponding to Requirements Management
Interface (RMI) preference names and accepted values for each preference.

currentVal = rmipref(prefName) returns the current value of the preference
specified by prefName.

previousVal = rmipref(Name,Value) sets a new value for the RMI preference
specified by Name, and returns the previous value of that RMI preference.

Examples

References to Simulink Model in External Requirements Documents

Choose the type of reference that the RMI uses when it creates links to your model from
external requirements documents. The reference to your model can be either the model
file name or the full absolute path to the model file.

The value of the 'ModelPathReference' preference determines how the RMI stores
references to your model in external requirements documents. To view the current value
of this preference, enter the following code at the MATLAB command prompt.

 rmipref

1-55

currentVal = rmipref('ModelPathReference')

The default value of the 'ModelPathReference' preference is 'none'.

currentVal =

none

This default value specifies that the RMI uses only the model file name in references to
your model that it creates in external requirements documents.

Automatic Application of User Tags to Selection-Based Requirements Links

Configure the RMI to automatically apply a specified list of user tag keywords to new
selection-based requirements links that you create.

Specify that the user tags design and reqts apply to new selection-based requirements
links that you create.

previousVal = rmipref('SelectionLinkTag','design,reqts')

When you specify a new value for an RMI preference, rmipref returns the previous value
of that RMI preference. In this case, previousVal is an empty character vector, the
default value of the 'SelectionLinkTag' preference.

previousVal =

 ''

View the currently specified value for the 'SelectionLinkTag' preference.

currentVal = rmipref('SelectionLinkTag')

The function returns the currently specified comma-separated list of user tags.

currentVal =

design,reqts

These user tags apply to all new selection-based requirements links that you create.

1 Functions — Alphabetical List

1-56

Internal Storage of Requirements Traceability Data

Configure the RMI to embed requirements links data in the model file instead of in a
separate .req file.

Note If you have existing requirements links for your model that are stored internally,
you need to move these links into an external .req file before you change the storage
settings for your requirements traceability data. See “Move Internally Stored
Requirements Links to External Storage” for more information.

If you would like to embed requirements traceability data in the model file, set the
'StoreDataExternally' preference to 0.

previousVal = rmipref('StoreDataExternally',0)

When you specify a new value for an RMI preference, rmipref returns the previous value
of that RMI preference. By default, the RMI stores requirements links data externally in a
separate .req file, so the previous value of this preference was 1.

previousVal =

 1

After you set the 'StoreDataExternally' preference to 0, your requirements links are
embedded in the model file.

currentVal = rmipref('StoreDataExternally')

currentVal =

 0

Input Arguments
prefName — RMI preference name
'BiDirectionalLinking' | 'FilterRequireTags' | 'CustomSettings' | ...

RMI preference name, specified as the corresponding Name character vector listed in
“Name-Value Pair Arguments” on page 1-58.

 rmipref

1-57

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' ').
Example: 'BiDirectionalLinking',true enables bidirectional linking for your model,
so that when you create a selection-based link to a requirements document, the RMI
creates a corresponding link to your model from the requirements document.

BiDirectionalLinking — Bidirectional selection linking preference
false (default) | true

Bidirectional selection linking preference, specified as a logical value.

This preference specifies whether to simultaneously create return link from target to
source when creating link from source to target. This setting applies only for
requirements document types that support selection-based linking.
Data Types: logical

DocumentPathReference — Preference for path format of links to requirements
documents from model
'modelRelative' (default) | 'absolute' | 'pwdRelative' | 'none'

Preference for path format of links to requirements documents from model, specified as
one of the following values.

Value Document reference contains...
'absolute' full absolute path to requirements

document.
'pwdRelative' path relative to MATLAB current folder.
'modelRelative' path relative to model file.
'none' document file name only.

For more information, see “Document Path Storage”.
Data Types: char

ModelPathReference — Preference for path format in links to model from
requirements documents
'none' (default) | 'absolute'

1 Functions — Alphabetical List

1-58

Preference for path format in links to model from requirements documents, specified as
one of the following values.

Value Model reference contains...
'absolute' full absolute path to model.
'none' model file name only.

Data Types: char

LinkIconFilePath — Preference to use custom image file as requirements link
icon
empty character vector (default) | full image file path

Preference to use custom image file as requirements link icon, specified as full path to
icon or small image file. This image will be used for requirements links inserted in
external documents.
Data Types: char

FilterEnable — Preference to enable filtering by user tag keywords
false (default) | true

Preference to enable filtering by user tag keywords, specified as a logical value. When
you filter by user tag keywords, you can include or exclude subsets of requirements links
in highlighting or reports. You can specify user tag keywords for requirements links
filtering in the 'FilterRequireTags' and 'FilterExcludeTags' preferences. For
more information about requirements filtering, see “Filter Requirements with User Tags”.
Data Types: logical

FilterRequireTags — Preference for user tag keywords for requirements links
empty character vector (default) | comma-separated list of user tag keywords

Preference for user tag keywords for requirements links, specified as a comma-separated
list of words or phrases in a character vector. These user tags apply to all new
requirements links you create. Requirements links with these user tags are included in
model highlighting and reports. For more information about requirements filtering, see
“Filter Requirements with User Tags”.
Data Types: char

 rmipref

1-59

FilterExcludeTags — Preference to exclude certain requirements links from
model highlighting and reports
empty character vector (default) | comma-separated list of user tag keywords

Preference to exclude certain requirements links from model highlighting and reports,
specified as a comma-separated list of user tag keywords. Requirements links with these
user tags are excluded from model highlighting and reports. For more information about
requirements filtering, see “Filter Requirements with User Tags”.
Data Types: char

FilterMenusByTags — Preference to disable labels of requirements links with
designated user tags
false (default) | true

Preference to disable labels of requirements links with designated user tags, specified as
a logical value. When set to true, if a requirement link has a user tag designated in
'FilterExcludeTags' or 'FilterRequireTags', that requirements link will be
disabled in the Requirements context menu. For more information about requirements
filtering, see “Filter Requirements with User Tags”.
Data Types: logical

FilterConsistencyChecking — Preference to filter Model Advisor requirements
consistency checks with designated user tags
false (default) | true

Preference to filter Model Advisor requirements consistency checks with designated user
tags, specified as a logical value. When set to true, Model Advisor requirements
consistency checks include requirements links with user tags designated in
'FilterRequireTags' and excludes requirements links with user tags designated in
'FilterExcludeTags'. For more information about requirements filtering, see “Filter
Requirements with User Tags”.
Data Types: logical

KeepSurrogateLinks — Preference to keep DOORS surrogate links when
deleting all requirements links
empty (default) | false | true

Preference to keep DOORS surrogate links when deleting all requirements links, specified
as a logical value. When set to true, selecting Requirements > Delete All Links
deletes all requirements links including DOORS surrogate module requirements links.

1 Functions — Alphabetical List

1-60

When not set to true or false, selecting Requirements > Delete All Links opens a
dialog box with a choice to keep or delete DOORS surrogate links.
Data Types: logical

ReportFollowLibraryLinks — Preference to include requirements links in
referenced libraries in generated report
false (default) | true

Preference to include requirements links in referenced libraries in generated report,
specified as a logical value. When set to true, generated requirements reports include
requirements links in referenced libraries.
Data Types: logical

ReportHighlightSnapshots — Preference to include highlighting in model
snapshots in generated report
true (default) | false

Preference to include highlighting in model snapshots in generated report, specified as a
logical value. When set to true, snapshots of model objects in generated requirements
reports include highlighting of model objects with requirements links.
Data Types: logical

ReportNoLinkItems — Preference to include model objects with no requirements
links in generated requirements reports
false (default) | true

Preference to include model objects with no requirements links in generated
requirements reports, specified as a logical value. When set to true, generated
requirements reports include lists of model objects that have no requirements links.
Data Types: logical

ReportUseDocIndex — Preference to include short document ID instead of full
path to document in generated requirements reports
false (default) | true

Preference to include short document ID instead of full path to document in generated
requirements reports, specified as a logical value. When set to true, generated
requirements reports include short document IDs, when specified, instead of full paths to
requirements documents.

 rmipref

1-61

Data Types: logical

ReportIncludeTags — Preference to list user tags for requirements links in
generated reports
false (default) | true

Preference to list user tags for requirements links in generated reports, specified as a
logical value. When set to true, generated requirements reports include user tags
specified for each requirement link. For more information about requirements filtering,
see “Filter Requirements with User Tags”.
Data Types: logical

ReportDocDetails — Preference to include extra detail from requirements
documents in generated reports
false (default) | true

Preference to include extra detail from requirements documents in generated reports,
specified as a logical value. When set to true, generated requirements reports load
linked requirements documents to include additional information about linked
requirements. This preference applies to Microsoft Word, Microsoft Excel, and IBM
Rational DOORS requirements documents only.
Data Types: logical

ReportLinkToObjects — Preference to include links to model objects in
generated requirements reports
false (default) | true

Preference to include links to model objects in generated requirements reports, specified
as a logical value. When set to true, generated requirements reports include links to
model objects. These links work only if the MATLAB internal HTTP server is active.
Data Types: logical

SelectionLinkWord — Preference to include Microsoft Word selection link option
in Requirements context menu
true (default) | false

Preference to include Microsoft Word selection link option in Requirements context menu,
specified as a logical value.
Data Types: logical

1 Functions — Alphabetical List

1-62

SelectionLinkExcel — Preference to include Microsoft Excel selection link
option in Requirements context menu
true (default) | false

Preference to include Microsoft Excel selection link option in Requirements context
menu, specified as a logical value.
Data Types: logical

SelectionLinkDoors — Preference to include IBM Rational DOORS selection link
option in Requirements context menu
true (default) | false

Preference to include IBM Rational DOORS selection link option in Requirements context
menu, specified as a logical value.
Data Types: logical

SelectionLinkTag — Preference for user tags to apply to new selection-based
requirements links
empty character vector (default) | comma-separated list of user tag keywords

Preference for user tags to apply to new selection-based requirements links, specified as
a comma-separated list of words or phrases in a character vector. These user tags
automatically apply to new selection-based requirements links that you create. For more
information about requirements filtering, see “Filter Requirements with User Tags”.
Data Types: char

StoreDataExternally — Preference to store requirements links data in
external .req file
false (default) | true

Preference to store requirements links data in external .req file, specified as a logical
value. This setting applies to all new models and to existing models that do not yet have
requirements links. For more information about storage of requirements links data, see
“Requirements Link Storage”.
Data Types: logical

UseActiveXButtons — Preference to use legacy ActiveX® buttons in Microsoft
Office requirements documents
false (default) | true

 rmipref

1-63

Preference to use legacy ActiveX buttons in Microsoft Office requirements documents,
specified as a logical value. The default value of this preference is false; requirements
links are URL-based by default. ActiveX requirements navigation is supported for
backward compatibility.
Data Types: logical

CustomSettings — Preference for storing custom settings
inUse: 0 (default) | structure array of custom field names and settings

Preference for storing custom settings, specified as a structure array. Each field of the
structure array corresponds to the name of your custom preference, and each associated
value corresponds to the value of that custom preference.
Data Types: struct

Output Arguments
currentVal — Current value of the RMI preference specified by prefName
true | false | 'absolute' | 'none' | ...

Current value of the RMI preference specified by prefName. RMI preference names and
their associated possible values are listed in “Name-Value Pair Arguments” on page 1-58.

previousVal — Previous value of the RMI preference specified by prefName
true | false | 'absolute' | 'none' | ...

Previous value of the RMI preference specified by prefName. RMI preference names and
their associated possible values are listed in “Name-Value Pair Arguments” on page 1-58.

See Also
rmi

Topics
“Requirements Settings”

Introduced in R2013a

1 Functions — Alphabetical List

1-64

rmiref.insertRefs
Insert links to models into requirements documents

Syntax
[total_links, total_matches, total_inserted] = rmiref.insertRefs(
model_name, doc_type)

Description
[total_links, total_matches, total_inserted] = rmiref.insertRefs(
model_name, doc_type) inserts ActiveX controls into the open, active requirements
document of type doc_type. These controls correspond to links from model_name to the
document. With these controls, you can navigate from the requirements document to the
model.

Input Arguments
model_name

Name or handle of a Simulink model

doc_type

A character vector that indicates the requirements document type:

• 'word'
• 'excel'

Examples
Remove the links in an example requirements document, and then reinsert them:

 rmiref.insertRefs

1-65

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 Open the example requirements document:

open([matlabroot strcat('/toolbox/slvnv/rmidemos/fuelsys_req_docs/',...
 'slvnvdemo_FuelSys_DesignDescription.docx')])

3 Remove the links from the requirements document:

rmiref.removeRefs('word')
4 Enter y to confirm the removal.
5 Reinsert the links from the requirements document to the model:

[total_links, total_matches, total_inserted] = ...
 rmiref.insertRefs(gcs, 'word')

See Also
rmiref.removeRefs

Introduced in R2011a

1 Functions — Alphabetical List

1-66

matlab:slvnvdemo_fuelsys_officereq

rmiref.removeRefs
Remove links to models from requirements documents

Syntax
rmiref.removeRefs(doc_type)

Description
rmiref.removeRefs(doc_type) removes all links to models from the open, active
requirements document of type doc_type.

Input Arguments
doc_type

A character vector that indicates the requirements document type:

• 'word'
• 'excel'
• 'doors'

Examples
Remove the links in this example requirements document:
open([matlabroot strcat('/toolbox/slvnv/rmidemos/fuelsys_req_docs/', ...
 'slvnvdemo_FuelSys_DesignDescription.docx')])
rmiref.removeRefs('word')

See Also
rmiref.insertRefs

 rmiref.removeRefs

1-67

Introduced in R2011a

1 Functions — Alphabetical List

1-68

rmitag
Manage user tags for requirements links

Syntax
rmitag(model, 'list')
rmitag(model, 'add', tag)
rmitag(model, 'add', tag, doc_pattern)
rmitag(model, 'delete', tag)
rmitag(model, 'delete', tag, doc_pattern)
rmitag(model, 'replace', tag, new_tag)
rmitag(model, 'replace', tag, new_tag, doc_pattern)
rmitag(model, 'clear', tag)
rmitag(model, 'clear', tag, doc_pattern)

Description
rmitag(model, 'list') lists all user tags in model.

rmitag(model, 'add', tag) adds tag as a user tag for all requirements links in
model.

rmitag(model, 'add', tag, doc_pattern) adds tag as a user tag for all links in
model, where the full or partial document name matches the regular expression
doc_pattern.

rmitag(model, 'delete', tag) removes the user tag, tag from all requirements
links in model.

rmitag(model, 'delete', tag, doc_pattern) removes the user tag, tag, from all
requirements links in model, where the full or partial document name matches
doc_pattern.

rmitag(model, 'replace', tag, new_tag) replaces tag with new_tag for all
requirements links in model.

 rmitag

1-69

rmitag(model, 'replace', tag, new_tag, doc_pattern) replaces tag with
new_tag for links in model, where the full or partial document name matches the regular
expression doc_pattern.

rmitag(model, 'clear', tag) deletes all requirements links that have the user tag,
tag.

rmitag(model, 'clear', tag, doc_pattern) deletes all requirements links that
have the user tag, tag, and link to the full or partial document name specified in
doc_pattern.

Input Arguments
model

Name of or handle to Simulink or Stateflow model with which requirements are
associated.

tag

Character vector specifying user tag for requirements links.

doc_pattern

Regular expression to match in the linked requirements document name. Not case
sensitive.

new_tag

Character vector that indicates the name of a user tag for a requirements link. Use this
argument when replacing an existing user tag with a new user tag.

Examples
Open the slvnvdemo_fuelsys_officereq example model, and add the user tag
tmptag to all objects with requirements links:

open_system('slvnvdemo_fuelsys_officereq');
rmitag(gcs, 'add', 'tmptag');

1 Functions — Alphabetical List

1-70

Remove the user tag test from all requirements links:

open_system('slvnvdemo_fuelsys_officereq');
rmitag(gcs, 'delete', 'test');

Delete all requirements links that have the user tag design:

open_system('slvnvdemo_fuelsys_officereq');
rmitag(gcs, 'clear', 'design');

Change all instances of the user tag tmptag to safety requirement, where the
document filename extension is .docx:

open_system('slvnvdemo_fuelsys_officereq');
rmitag(gcs, 'replace', 'tmptag', ...
 'safety requirements', '\.docx');

See Also
rmi | rmidocrename

Topics
“User Tags and Requirements Filtering”

Introduced in R2010a

 rmitag

1-71

RptgenRMI.doorsAttribs
IBM Rational DOORS attributes in requirements report

Syntax
RptgenRMI.doorsAttribs (action,attribute)

Description
RptgenRMI.doorsAttribs (action,attribute) specifies which DOORS object
attributes to include in the generated requirements report.

Input Arguments
action

Character vector that specifies the desired action for what content to include from a
DOORS record in the generated requirements report. Valid values for this argument are
as follows.

Value Description
'default' Restore the default settings for the DOORS system attributes

to include in the report.

The default configuration includes the Object Heading and
Object Text attributes, and all other attributes, except:

• Created Thru
• System attributes with empty string values
• System attributes that are false

'show' Display the current settings for the DOORS attributes to
include in the report.

1 Functions — Alphabetical List

1-72

Value Description
'type' Include or omit groups of DOORS attributes from the report.

If you specify 'type' for the first argument, valid values for
the second argument are:

• 'all' — Include all DOORS attributes in the report.
• 'user' — Include only user-defined DOORS in the report.
• 'none' — Omit all DOORS attributes from the report.

'remove' Omit specified DOORS attributes from the report.
'all' Include specified DOORS attributes in the report, even if that

attribute is currently excluded as part of a group.
'nonempty' Enable or disable the empty attribute filter:

• Enter RptgenRMI.doorsAttribs('nonempty',
'off') to omit all empty attributes from the report.

• Enter RptgenRMI.doorsAttribs('nonempty', 'on')
to include empty user-defined attributes. The report never
includes empty system attributes.

Default:

attribute

Character vector that qualifies the action argument.

Output Arguments
result

• True if RptgenRMI.doorsAttribs modifies the current settings.
• For RptgenRMI.doorsAttribs('show'), this argument is a cell array of character

vectors that indicate which DOORS attributes to include in the requirements report,
for example:

>> RptgenRMI.doorsAttribs('show')

ans =

 RptgenRMI.doorsAttribs

1-73

 'Object Heading'
 'Object Text'
 '$AllAttributes$'
 '$NonEmpty$'
 '-Created Thru'

• The Object Heading and Object Text attributes are included by default.
• '$AllAttributes$' specifies to include all attributes associated with each

DOORS object.
• '$Nonempty$' specifies to exclude all empty attributes.
• '-Created Thru' specifies to exclude the Created Thru attribute for each

DOORS object.

Examples
Limit the DOORS attributes in the requirements report to user-defined attributes:

RptgenRMI.doorsAttribs('type', 'user');

Omit the content of the Last Modified By attribute from the requirements report:

RptgenRMI.doorsAttribs('remove', 'Last Modified By');

Include the content of the Last Modified On attribute in the requirements report, even if
system attributes are not included as a group:

RptgenRMI.doorsAttribs('add', 'Last Modified On');

Include empty system attributes in the requirements report:

RptgenRMI.doorsAttribs('nonempty', 'off');

Omit the Object Heading attribute from the requirements report. Use this option when
the link label is always the same as the Object Heading for the target DOORS object and
you do not want duplicate information in the requirements report:

RptgenRMI.doorsAttribs('remove', 'Object Heading');

1 Functions — Alphabetical List

1-74

See Also
rmi

Introduced in R2011b

 RptgenRMI.doorsAttribs

1-75

slwebview_req
Export Simulink system to Web views with requirements

Syntax
filename = slwebview_req(sysname)
filename = slwebview_req(sysname,Name,Value)

Description
filename = slwebview_req(sysname) exports the system sysname and its children
to a web page filename with contextual requirements information for the system
displayed on a separate panel of the layered model structure Web view.

filename = slwebview_req(sysname,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

Note You can use slwebview_req only if you have also installed Simulink Report
Generator™.

Examples

Export All Layers

Export all the layers (including libraries and masks) from the system gcs to the file
filename

1 Functions — Alphabetical List

1-76

filename = slwebview_req(gcs, 'LookUnderMasks', 'all',
'FollowLinks', 'on')

Input Arguments
sysname — The system to export to a Web view file
character vector containing the path to the system | handle to a subsystem or block
diagram | handle to a chart or subchart

Exports the specified system or subsystem and its child systems to a Web view file, with
contextual requirements information for the system displayed on a separate panel of the
layered model structure Web view. By default, child systems of the sysname system are
also exported. Use the SearchScope name-value pair to export other systems, in relation
to sysname.
Example: ‘sysname’

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:

SearchScope — Systems to export, relative to the sysname system
'CurrentAndBelow' (default) | 'Current' | 'CurrentAndAbove' | 'All'

'CurrentAndBelow' exports the Simulink system or the Stateflow chart specified by
sysname and all systems or charts that it contains.

'Current' exports only the Simulink system or the Stateflow chart specified by
sysname.

'CurrentAndAbove' exports the Simulink system or the Stateflow chart specified by the
sysname and all systems or charts that contain it.

'All' exports all Simulink systems or Stateflow charts in the model that contains the
system or chart specified by sysname.

 slwebview_req

1-77

Data Types: char

LookUnderMasks — Specifies whether to export the ability to interact with
masked blocks
'none' (default) | 'all'

'none' does not export masked blocks in the Web view. Masked blocks are included in
the exported systems, but you cannot access the contents of the masked blocks.

'all' exports all masked blocks.
Data Types: char

FollowLinks — Specifies whether to follow links into library blocks
'off' (default) | 'on'

'off' does not allow you to follow links into library blocks in a Web view.

'on' allows you to follow links into library blocks in a Web view.
Data Types: char

FollowModelReference — Specifies whether to access referenced models in a
Web view
'off' (default) | 'on'

'off' does not allow you to access referenced models in a Web view.

'on' allows you to access referenced models in a Web view.
Data Types: char

ViewFile — Specifies whether to display the Web view in a Web browser when
you export the Web view
'on' (default) | 'off'

'on' displays the Web view in a Web browser when you export the Web view.

'off' does not display the Web view in a Web browser when you export the Web view.
Data Types: char

ShowProgressBar — Specifies whether to display the status bar when you export
a Web view
'on' (default) | 'off'

1 Functions — Alphabetical List

1-78

'on' displays the status bar when you export a Web view.

'off' does not display the status bar when you export a Web view.
Data Types: char

Output Arguments
filename — The name of the HTML file for displaying the Web view
character vector

Reports the name of the HTML file for displaying the Web view. Exporting a Web view
creates the supporting files, in a folder.

Tips
A Web view is an interactive rendition of a model that you can view in a Web browser. You
can navigate a Web view hierarchically to examine specific subsystems and to see
properties of blocks and signals.

You can use Web views to share models with people who do not have Simulink installed.

Web views require a Web browser that supports Scalable Vector Graphics (SVG).

See Also
slwebview_cov

Introduced in R2015a

 slwebview_req

1-79

Classes — Alphabetical List

2

slreq.Link
Work with link objects

Description
When you establish a traceable association between artifacts, Simulink
Requirementscreates an slreq.Link object to store source and destination data of the
link.

Construction
link = slreq.createLink(src, dest) creates an slreq.Link object link with
source and destination artifacts specified by src and dest respectively. The slreq.Link
object is stored in the Link set file that belongs to src.

outLinks = slreq.outLinks(src) returns an array of slreq.Link objects
outLinks that contains the outgoing links from the source artifact src.

inLinks = slreq.inLinks(dest) returns an array of slreq.Link objects inLinks
that contains the incoming links to the destination artifact dest.

Input Arguments
src — Link source artifact
structure

Link source artifact, specified as a MATLAB structure.

dest — Link destination artifact
structure

Link destination artifact, specified as a MATLAB structure.

2 Classes — Alphabetical List

2-2

Output Arguments
link — Link object
slreq.Link object

Handle to a link, returned as an slreq.Link object.

outLinks — Outgoing links
slreq.Link object array

Array of outgoing links.

inLinks — Incoming links
slreq.Link object array

Array of incoming links.

Properties
CreatedOn — Date link was created
datetime value

The date on which the link was created, specified as a datetime value. The software
populates this property.

CreatedBy — Link creator
character vector

The name of the individual or organization who created the link.

ModifiedOn — Date link was modified
datetime value

The date on which the link was last modified, specified as a datetime value. The
software populates this property.

ModifiedBy — Link modifier
character vector

The name of the individual or organization who last modified the link.

 slreq.Link

2-3

Comments — Link comments
structure array

The comments that are attached with the link, returned as a structure.

Type — Link type enumeration
'Implement' | 'Verify' | 'Relate' | 'Derive' | 'Refine'

The relationship between the source and the destination artifacts. For more information,
see “Link Types”.

Description — Link description
character vector

Link descriptive text, specified as a multi-line character vector.

Keywords — Link keywords
character array

Link keywords, specified as character array.

Rationale — Link rationale
character vector

Link rationale text, specified as a multiline character vector.

Methods
destination Get link destination artifact
LinkSet Return parent link set
source Get link source artifact

Examples

Create Links
% Create a link between the current Simulink Object and a requirement
link1 = slreq.createLink(gcb, REQ)

2 Classes — Alphabetical List

2-4

link1 =

 Link with properties:

 Type: 'Implement'
 Description: 'Plant Specs'
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 02-Sep-2017 15:49:28
 CreatedBy: 'Jane Doe'
 ModifiedOn: 21-Oct-2017 11:34:12
 ModifiedBy: 'John Doe'
 Comments: [0×0 struct]

% Create a link between a requirement and the current Stateflow object
link2 = slreq.createLink(REQ, sfgco);

Get Incoming Links
% Get the handle to a requirements set
myReqSet = slreq.find('Type', 'ReqSet', 'Name', 'Design_Spec');

% Get the handle to a requirement in myReqSet
myReq = find(myReqSet, 'Type', 'Requirement', 'Id', 'R1.1');

% Query incoming links to myReq
inLinks = slreq.inLinks(myReqs);

Get Outgoing Links
% Load a link set and get link sources
myLinkSet = slreq.load('fuelsys.slx');
allSrcs = myLinkSet.sources();

% Get outgoing links
myLinks1 = slreq.outLinks(allSrcs(1));

See Also
slreq.LinkSet | slreq.createLink

 slreq.Link

2-5

Introduced in R2018a

2 Classes — Alphabetical List

2-6

slreq.LinkSet
Work with link sets

Description
Instances of slreq.LinkSet are Link Set objects. Links are organized in Link Sets. Each
Link Set is associated with a source artifact such as a Simulink model or a data dictionary
and is serialized into a separate file which stores the links associated with it. The default
location and name of the Link set file matches that of the source artifact.

Construction
allLinkSets = slreq.find('Type', 'LinkSet') finds and returns an array of all
loaded slreq.LinkSet objects allLinkSets.

myLinkSet = slreq.find('Type', 'LinkSet', 'Name', ArtifactName) finds
and returns an slreq.LinkSet object myLinkSet matching the artifact name specified
by ArtifactName.

myLinkSet = slreq.load(ArtifactName) loads an slreq.LinkSet object
myLinkSet matching the artifact name specified by ArtifactName.

Input Arguments
ArtifactName — Link set artifact name
character vector

The name of the link set artifact, specified as a character vector.

Output Arguments
allLinkSets — Link sets
slreq.LinkSet array

Array of all loaded link sets.

 slreq.LinkSet

2-7

myLinkSet — Link set
slreq.LinkSet object

Link set, returned as an slreq.LinkSet object.

Properties
Filename — Link set file path
character vector

The file path of the link set, specified as a character vector.

Artifact — Container identifier
character vector

Top-level container identifier, such as a Microsoft Office document name, an IBM Rational
DOORS Module unique ID, Simulinkmodel name, or Simulink Test™ Test Manager file
name.

Domain — Link set custom link type
character vector

The custom link type of the links in the link set. For more information, see “Custom Link
Types”.
Example: linktype_rmi_excel, linktype_rmi_doors

Revision — Link set revision number
scalar

Link set revision number, specified as a scalar.

Dirty — Unsaved changes indicator
0 | 1

Indicates if the link set has unsaved changes. 0 for no unsaved changes and 1 for unsaved
changes.

Description — Link set description
character vector

Link set description text, specified as a character vector.

2 Classes — Alphabetical List

2-8

Methods
save Save link set
sources Get link sources

Examples
% Find a link set
myLinkSet1 = slreq.find('Type', 'LinkSet', 'Name', 'Project_req')

myLinkSet1 =

 LinkSet with properties:

 Description: ''
 Filename: 'Project_req.slmx'
 Artifact: 'Project_req.slreqx'
 Domain: 'linktype_rmi_slreq'
 Revision: 2
 Dirty: 0

myLinkSet2 = slreq.load('fuelsys.slx')

myLinkset2 =

 LinkSet with properties:

 Description: ''
 Filename: 'C:\MATLAB\My_Files\fuelsys_linkset.slmx'
 Artifact: 'D:\Work\Design_Specs\fuelsys.slx'
 Domain: 'linktype_rmi_simulink'
 Revision: 2
 Dirty: 0

% Set the link set description
myLinkset2.Description = 'Link set for the fuel system'

myLinkset2 =

 LinkSet with properties:

 slreq.LinkSet

2-9

 Description: 'Link set for the fuel system'
 Filename: 'C:\MATLAB\My_Files\fuelsys_linkset.slmx'
 Artifact: 'D:\Work\Design_Specs\fuelsys.slx'
 Domain: 'linktype_rmi_simulink'
 Revision: 2
 Dirty: 1

See Also
rmimap.map | slreq.Link

Introduced in R2018a

2 Classes — Alphabetical List

2-10

slreq.Reference
Work with external requirement proxy objects

Description
Instances of slreq.Reference are proxies for external requirement objects that a third-
party external application manages and maintains. Referenced requirement objects are
read-only but can be synchronized from an external application and can exist only within
a requirements set.

Construction
ref = find(rs, 'Type', 'Reference', 'PropertyName', PropertyValue)
finds and returns a referenced requirement or a set of referenced requirements ref in
the requirements set rs specified by the properties matching PropertyName and
PropertyValue.

ref = add(rs, 'Artifact', FileName, 'PropertyName', PropertyValue)
adds a referenced requirement ref to a requirements set rs which references
requirements from the external document specified by FileName with properties and
custom attributes specified by PropertyName and PropertyValue.

Input Arguments
rs — Requirements set object
slreq.ReqSet object

Requirements set file, specified as an slreq.ReqSet object.

FileName — Container identifier
character vector

File name for a top-level container identifier, such as a Microsoft Office document name
or an IBM Rational DOORS Module unique ID.

 slreq.Reference

2-11

Output Arguments
ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as an slreq.Reference object.

Properties
Artifact — Container identifier
character vector

Top-level container identifier, like a Microsoft Office document name or an IBM Rational
DOORS Module unique ID.

Id — Reference ID
character vector

Reference ID, returned as a character vector.

Summary — Referenced requirement summary
character vector

Referenced requirement summary text, returned as a character vector.

Description — Referenced requirement description
character vector

Referenced requirement description text, returned as a multiline character vector.

SID — Referenced requirement Session Independent Identifier
character vector

The Session Independent Identifier corresponding to the referenced requirement.

Domain — Requirements document custom link type
character vector

The custom link type of the requirements document. For more information, see “Custom
Link Types”.
Example: 'linktype_rmi_doors', 'linktype_rmi_excel'

2 Classes — Alphabetical List

2-12

SynchronizedOn — Date and time referenced requirement was last synchronized
datetime value

The date and time the referenced requirement was last synchronized with the external
document, specified as a datetime value. The software automatically populates this
property.

ModifiedOn — Date referenced requirement was modified
datetime value

The date the referenced requirement was last modified, specified as a datetime value.
The software automatically populates this property.

Methods
add Add referenced requirements
children Find children references
find Find referenced requirements
getAttribute Get referenced requirement attributes
parent Find parent item of referenced requirement
reqSet Return parent requirements set
setAttribute Set referenced requirement custom attributes

Examples

Get the Handle to a Referenced Requirement
% Find a referenced requirement with Id R9 in a requirements set rs
ref = find(rs, 'Type', 'Reference', 'Id', 'R9')

ref =

 Reference with properties:

 Keywords: [0×0 char]
 Artifact: 'Req_doc.docx'

 slreq.Reference

2-13

 Id: 'R9'
 Summary: 'System overview'
 Description: ''
 SID: 3
 Domain: 'linktype_rmi_word'
 SynchronizedOn: 25-Jul-2017 11:34:02

See Also
slreq.ReqSet | slreq.Requirement | slreq.import

Introduced in R2018a

2 Classes — Alphabetical List

2-14

slreq.ReqSet
Work with Requirements sets

Description
Instances of slreq.ReqSet are Requirement Set objects.

Construction
newReqSet = slreq.new(reqSetName) creates a requirement set named
reqSetName in the current working folder.

newReqSet = slreq.new(reqSetPath) creates a requirement set on the specified
path.

Input Arguments
reqSetName — Requirement set name
character vector

Name of the requirement set, specified as a character vector.
Example: 'Design Requirements'

reqSetPath — Requirement set file name and path
character vector

The file name and path of the requirement set, specified as a character vector.
Example: 'C:\MATLAB\myReqSet.slreqx'

Output Arguments
newReqSet — Requirements set
slreq.ReqSet object

 slreq.ReqSet

2-15

An instance of the slreq.ReqSet object.

Properties
Name — Requirements set name
character vector

Name of the requirements set, specified as a character vector.

Filename — Requirements set file path
character vector

The file path of the requirements set, specified as a character vector.

Revision — Requirements set revision number
scalar

Requirements set revision number, specified as a scalar.

CreatedBy — Requirements set creator
character vector

The name of the individual or organization who created the requirements set.

CreatedOn — Date requirements set was created
datetime value

The date the requirements set was created, specified as a datetime value. The software
automatically populates this property.

ModifiedBy — Requirements set modifier
character vector

The name of the individual or organization who last modified the requirements set.

ModifiedOn — Date requirements set was modified
datetime value

The date the requirements set was last modified, specified as a datetime value. The
software automatically populates this property.

2 Classes — Alphabetical List

2-16

Description — Requirements set description
character vector

Requirements set description text, specified as a character vector.

Dirty — Unsaved changes indicator
0 | 1

Indicates if the requirements set has unsaved changes. 0 for no unsaved changes, and 1
for unsaved changes.

CustomAttributeNames — Custom attributes associated with the requirements
set
cell array of character vectors

Requirements set custom attribute names, specified as a cell array of character vectors.

Methods
close Close a requirements set
createReferences Create read-only references to requirement items in third-party

documents
find Find requirements in requirements set that have matching

attribute values
importFromDocument Import editable requirements from external documents
save Save a requirements set

Examples

Create and Instantiate a Requirements Set Object
% Create a new requirements set
rs = slreq.new('My_Requirements_Set');

% Save and close the requirements set - saving creates a .slreqx file
save(rs);
close(rs);

 slreq.ReqSet

2-17

% Load an existing requirements set
rs1 = slreq.load('Design_Specifications');

% Open the requirements set in the Requirements Editor
slreq.open(rs1);

See Also
slreq.Link | slreq.LinkSet | slreq.Reference | slreq.Requirement

Introduced in R2018a

2 Classes — Alphabetical List

2-18

slreq.Requirement
Work with Requirement objects

Description
Instances of slreq.Requirement are Requirement objects that you manage solely
inside Simulink Requirements and that do not have a persistent association with artifacts
managed by external applications. Requirement objects can exist only within a
requirements set.

Construction
req = find(rs, 'PropertyName', PropertyValue) finds and returns a
requirement req in the requirements set rs with additional requirement properties
specified by PropertyName and PropertyValue.

req = add(rs, 'PropertyName', PropertyValue) adds a requirement req to the
requirement set rs with additional requirement properties specified by PropertyName
and PropertyValue.

Input Arguments
rs — Requirements set object
slreq.ReqSet object

Requirements set file, specified as an slreq.ReqSet object.

Output Arguments
req — Requirement object
slreq.Requirement object

Handle to a requirement, returned as an slreq.Requirement object.

 slreq.Requirement

2-19

Properties
Id — Requirement custom ID
character vector

Custom ID of the requirement, returned as a character vector. You cannot use spaces and
'#' in custom IDs.

Summary — Requirement summary
character vector

Requirement summary text, specified as a one-line, plain text character vector.

Keywords — Requirement keywords
character array

Requirement keywords, specified as character array.

Description — Requirement description
character vector

Requirement description text, specified as a multiline character vector.

Rationale — Requirement rationale
character vector

Requirement rationale text, specified as a multiline character vector.

SID — Requirement Session Independent Identifier
character vector

The Session Independent Identifier corresponding to the requirement.

CreatedOn — Date requirement was created
datetime value

The date on which the requirement was created, specified as a datetime value. The
software populates this property.

CreatedBy — Requirement creator
character vector

The name of the individual or organization who created the requirement.

2 Classes — Alphabetical List

2-20

ModifiedOn — Date requirement was modified
datetime value

The date on which the requirement was last modified, specified as a datetime value. The
software populates this property.

ModifiedBy — Requirement modifier
character vector

The name of the individual or organization who last modified the requirement.

FileRevision — Requirement revision number
scalar

Requirement revision number, specified as a scalar.

Dirty — Unsaved changes indicator
0 | 1

Indicates if the requirement has unsaved changes. 0 for no unsaved changes and 1 for
unsaved changes.

Comments — Requirement comments
structure array

The comments that are attached with the requirement, returned as a structure.

 slreq.Requirement

2-21

Methods

add Add requirement to requirements set
children Find child requirements of a requirement
demote Demote requirements
find Find requirements that have matching attribute values
getAttribute Get requirement attributes
parent Find parent item of requirement
promote Promote requirements
reqSet Return parent requirements set
setAttribute Set requirement attributes

Examples

Find a Requirement in a Requirements Set
% Find a requirement with ID 77 in a requirements set rs
req = find(rs, 'Type', 'Requirement', 'ID', '77');

req =

 Requirement with properties:

 Id: '77'
 Summary: 'Test Spec'
 Keywords: [0×0 char]
 Description: ''
 Rationale: ''
 SID: 80
 CreatedBy: 'John Doe'
 CreatedOn: 05-Oct-2007 16:09:38
 ModifiedBy: 'Jane Doe'
 ModifiedOn: 21-Dec-2016 11:10:05
 Comments: [0×0 struct]

2 Classes — Alphabetical List

2-22

See Also
slreq.Link | slreq.Reference | slreq.ReqSet

Introduced in R2018a

 slreq.Requirement

2-23

Methods — Alphabetical List

3

destination
Get link destination artifact

Syntax
dest = destination(myLink)

Description
dest = destination(myLink) returns the source artifact dest of the link myLink.

Input Arguments
myLink — Link object
slreq.Link object

Link, specified as an slreq.Link object.

Output Arguments
dest — Destination artifact
struct

The link destination artifact, returned as a MATLAB structure.

Examples

Get Link Destination
% Load a requirement set file and select one link
rs = slreq.load('C:\MATLAB\My_Req_Set.slreqx');

3 Methods — Alphabetical List

3-2

allReqs = find(rs, 'Type', 'Requirement');
req = allReqs(1);
allIncomingLinks = inLinks(req);
myLink = allIncomingLinks(1);

% Get link destination
myDestination = destination(myLink)

myDestination =

 struct with fields:

 reqSet: 'My_Req_Set'
 domain: 'linktype_rmi_slreq'
 summary: 'My Requirement'
 details: ''
 id: ''
 sid: 12

See Also
LinkSet | slreq.Link | source

Introduced in R2018a

 destination

3-3

LinkSet
Return parent link set

Syntax
lks = linkSet(myLink)

Description
lks = linkSet(myLink) returns the parent link set lks to which the link myLink
belongs.

Input Arguments
myLink — Link object
slreq.Link object

Link, specified as an slreq.Link object.

Output Arguments
lks — Parent link set
slreq.LinkSet object

Parent link set of the link myLink, returned as an slreq.LinkSet object.

Examples
Query Link Set Information
% Load a requirement set file and select one requirement
rs = slreq.load('C:\MATLAB\My_Req_Set.slreqx');

3 Methods — Alphabetical List

3-4

allReqs = find(rs, 'Type', 'Requirement');
req = allReqs(1);

% Find the incoming links that belong to req
allInLinks = inLinks(req);

% Query link set information
myParentLinkSet = linkSet(allInLinks)

myParentLinkSet =

 LinkSet with properties:

 Description: ''
 Filename: 'model_controller.slmx'
 Artifact: 'model_controller.slx'
 Domain: 'linktype_rmi_simulink'
 Revision: 4
 Dirty: 0

See Also
destination | slreq.Link | source

Introduced in R2018a

 LinkSet

3-5

source
Get link source artifact

Syntax
src = source(myLink)

Description
src = source(myLink) returns the source artifact src of the link myLink.

Input Arguments
myLink — Link object
slreq.Link object

Link, specified as an slreq.Link object.

Output Arguments
src — Source artifact
struct

The link source artifact, returned as a MATLAB structure.

Examples

Get Link Source
% Load a requirement set file and select one link
rs = slreq.load('C:\MATLAB\My_Req_Set.slreqx');

3 Methods — Alphabetical List

3-6

allReqs = find(rs, 'Type', 'Requirement');
req = allReqs(1);
allIncomingLinks = inLinks(req);
myLink = allIncomingLinks(1);

% Get link source
mySource = source(myLink)

mySource =

 struct with fields:

 domain: 'linktype_rmi_simulink'
 artifact: 'controller_model.slx'
 id: ':241'

See Also
LinkSet | destination | slreq.Link

Introduced in R2018a

 source

3-7

save
Save link set

Syntax
save(lks)
save(lks, filePath)

Description
save(lks) saves the link set lks by using its file name.

save(lks, filePath) saves the link set lks and updates its Name and Filename
properties.

Input Arguments
lks — Link set file
slreq.LinkSet object

Link set file, specified as an slreq.LinkSet object.

filePath — File name and path
character vector

The file name and path of the link set, specified as a character vector.
Example: 'C:\MATLAB\myLinkSet.slmx'

3 Methods — Alphabetical List

3-8

Examples

Save Link Set File
% Load a link set file
myLinkSet = slreq.load(get_param('fuelsys', 'Name'));

% Save the link set file
save(myLinkSet);

% Save the link set file by another name
save(myLinkSet, 'C:\MATLAB\Files\MyLinkSet1.slmx');

See Also
slreq.LinkSet | sources

Introduced in R2018a

 save

3-9

sources
Get link sources

Syntax
linkSetSources = sources(lks)

Description
linkSetSources = sources(lks) returns an array of structures linkSetSources
that contains the link sources of all the links in the link set lks.

Input Arguments
lks — Link set
slreq.LinkSet object

Instance of an slreq.LinkSet object.

Output Arguments
linkSetSources — Link set sources
structure

Link set source data, returned as a MATLAB structure.

Examples
Get Link Sources
% Load a link set and get link sources
myLinkSet = slreq.load('fuelsys.slx');

3 Methods — Alphabetical List

3-10

mySources = sources(myLinkSet)

mySources =

 1×16 struct array with fields:

 domain
 artifact
 id

See Also
save | slreq.LinkSet

Introduced in R2018a

 sources

3-11

add
Add referenced requirements

Syntax
refNew = add(rs, 'Artifact',FileName,'PropertyName',PropertyValue)
refChild = add(ref,'Artifact',FileName,'PropertyName',PropertyValue)

Description
refNew = add(rs, 'Artifact',FileName,'PropertyName',PropertyValue)
adds a referenced requirement refNew to a requirements set rs which references
requirements from the external document specified by FileName with properties and
custom attributes specified by PropertyName and PropertyValue.

refChild = add(ref,'Artifact',FileName,'PropertyName',PropertyValue)
adds a referenced child requirement refChild to a referenced requirement ref which
references requirements from the external document specified by FileName with
properties and custom attributes specified by PropertyName and PropertyValue.

Input Arguments
rs — Requirements set file
slreq.ReqSet object

Requirements set file, specified as an slreq.ReqSet object.

ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as an slreq.Reference object.

FileName — Container identifier
character vector

3 Methods — Alphabetical List

3-12

File name for a top-level container identifier, such as a Microsoft Office document name
or an IBM Rational DOORS Module unique ID.

Output Arguments
refNew — Referenced requirement
slreq.Reference object

The referenced requirement that was added, returned as an slreq.Reference object.

refChild — Referenced child requirement
slreq.Reference object

The referenced child requirement that was added, returned as an slreq.Reference
object.

Examples

Add a Referenced Requirement
% Load a requirements set file

rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

% The parent external document for rs is Req_doc.docx
% Add a top-level referenced requirement to rs
newRef1 = add(rs, 'Artifact', 'crs_req.docx', 'Id', '5.0', 'Summary', 'Additional Requirement');

% Add a child referenced requirement to newRef1
newRef2 = add(newRef1, 'Artifact', 'crs_req.docx', 'Id', '5.1', 'Summary', 'Additional Child Requirement');

See Also
slreq.Reference | slreq.ReqSet

Introduced in R2018a

 add

3-13

children
Find children references

Syntax
childRefs = children(ref)

Description
childRefs = children(ref) returns the child referenced requirements childRefs
of the slreq.Reference object ref.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Reference to a requirement specified as an slreq.Reference object.

Output Arguments
childRef — Child references
slreq.Reference object | slreq.Reference object array

The child referenced requirements belonging to the referenced requirement ref,
returned as slreq.Reference objects.

3 Methods — Alphabetical List

3-14

Examples

Find Child References
% Load a requirements set file and find referenced requirements
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
allRefs = find(rs, 'Type', 'Reference')

allRefs =

 1×32 Reference array with properties:

 Keywords
 Artifact
 Id
 Summary
 Description
 SID
 Domain
 SynchronizedOn
 ModifiedOn

ref1 = allRefs(1);

% Find the children of ref1
childRef = children(ref1)

childRef =

 Reference with properties:

 Keywords: [0×0 char]
 Artifact: 'Req_doc.docx'
 Id: 'R1.1'
 Summary: 'References'
 Description: ''
 SID: 2
 Domain: 'linktype_rmi_word'
 SynchronizedOn: 26-Jul-2015 15:45:22
 ModifiedOn: 27-Jul-2015 12:00:13

 children

3-15

See Also
parent | slreq.Reference | slreq.ReqSet

Introduced in R2018a

3 Methods — Alphabetical List

3-16

find
Find referenced requirements

Syntax
refs = find(rs, 'Type', 'Reference', 'PropertyName', PropertyValue)

Description
refs = find(rs, 'Type', 'Reference', 'PropertyName', PropertyValue)
finds and returns a referenced requirement or a set of referenced requirements refs in
the requirements set rs specified by the properties matching PropertyName and
PropertyValue.

Input Arguments
rs — Requirements set
slreq.ReqSet object

Requirements set specified as an slreq.ReqSet object.

Output Arguments
refs — Referenced requirements
slreq.Reference object | slreq.Reference object array

Referenced requirements, returned as slreq.Reference objects.

 find

3-17

Examples

Find Referenced Requirements That Have Matching Attribute
Values
% Load a requirements set file
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

% Find all referenced requirements with Id R10 in the requirements set
matchedRefs = find(rs, 'Type', 'Reference', 'Id', 'R10')

matchedRefs =

 Reference with properties:

 Keywords: [0×0 char]
 Artifact: 'Req_doc.docx'
 Id: 'R10'
 Summary: 'System overview'
 Description: ''
 SID: 3
 Domain: 'linktype_rmi_word'
 SynchronizedOn: 23-Jul-2017 12:47:23

See Also
slreq.Reference | slreq.ReqSet | slreq.find

Introduced in R2018a

3 Methods — Alphabetical List

3-18

getAttribute
Get referenced requirement attributes

Syntax
val = getAttribute(ref, propertyName)

Description
val = getAttribute(ref, propertyName) gets a referenced requirement property.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Reference to a requirement specified as an slreq.Reference object.

propertyName — Referenced requirement property
character vector

Referenced requirement property name.
Example: 'SID', 'CreatedOn', 'Summary'

Examples

Get Referenced Requirement Attributes
% Load a requirements set file and get the handle to
% one referenced requirement

rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

 getAttribute

3-19

ref1 = find(rs, 'Type', 'Reference', 'Id', 'R10.1');

% Get the Summary of ref1
summaryRef1 = getAttribute(ref1, 'Summary')

summaryRef1 =

 'Control Algorithm'

See Also
setAttribute | slreq.Reference | slreq.ReqSet

Introduced in R2018a

3 Methods — Alphabetical List

3-20

parent
Find parent item of referenced requirement

Syntax
parentObj = parent(ref)

Description
parentObj = parent(ref) returns the parent object parentObj of the
slreq.Reference object req.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Referenced requirement specified as an slreq.Reference object.

Output Arguments
parentObj — Parent object
slreq.Reference object | slreq.ReqSet object

The parent of the referenced requirement ref, returned as an slreq.Reference object
or as an slreq.ReqSet object.

 parent

3-21

Examples

Find Parent References
% Load a requirements set file and find referenced requirements
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
refs = find(rs, 'Type', 'Reference')

refs =

 1×32 Reference array with properties:

 Keywords
 Artifact
 Id
 Summary
 Description
 SID
 Domain
 SynchronizedOn
 ModifiedOn

% Find the parent of the first reference element
parentRef1 = parent(refs(1));

parentRef1 =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 6
 Dirty: 1
 CustomAttributeNames: {}

See Also
children | slreq.Reference | slreq.ReqSet

Introduced in R2018a

3 Methods — Alphabetical List

3-22

reqSet
Return parent requirements set

Syntax
rsout = reqSet(ref)

Description
rsout = reqSet(ref) returns the parent requirements set rsout to which the
referenced requirement ref belongs.

Input Arguments
ref — Referenced requirement object
slreq.Reference object

Referenced requirement, specified as a slreq.Reference object.

Output Arguments
rsout — Parent requirements set
slreq.ReqSet object

The parent requirements set of the referenced requirement ref, returned as an
slreq.ReqSet object.

 reqSet

3-23

Examples

Query Requirements Set Information
% Load a new requirements set file and select one referenced requirement
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
allRefs = find(rs,'Type','Reference');
ref = allRefs(1);

% Query which requirements set ref belongs to
reqSet(ref)

ans =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 65
 Dirty: 0
 CustomAttributeNames: {}

See Also
parent | slreq.Reference | slreq.ReqSet

Introduced in R2018a

3 Methods — Alphabetical List

3-24

setAttribute
Set referenced requirement custom attributes

Syntax
setAttribute(ref, propertyName, propertyValue)

Description
setAttribute(ref, propertyName, propertyValue) sets a referenced
requirement property. Use this method to set the values of custom attributes that you
define for your requirements set.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Referenced requirement specified as an slreq.Reference object.

propertyName — Referenced requirement custom attribute
character vector

Referenced requirement custom attribute name.
Example: 'Priority'

propertyValue — Referenced requirement custom attribute value
character vector

Referenced requirement custom attribute name, specified as a character vector.
Example: 'High', 'Medium'

 setAttribute

3-25

Examples

Set Referenced Requirement Custom Attribute
% Load a requirements set file and get the handle to one requirement
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
ref1 = find(rs, 'Type', 'Reference', 'ID', 'R20.1');

% Set the Priority of req1
setAttribute(ref1, 'Priority', 'Low');

See Also
getAttribute | slreq.Reference | slreq.ReqSet

Introduced in R2018a

3 Methods — Alphabetical List

3-26

close
Close a requirements set

Syntax
close(rs)

Description
close(rs) closes a requirements set.

Input Arguments
rs — Requirements set file
slreq.ReqSet object

Requirements set file, specified as an slreq.ReqSet object.

Examples

Close a Requirement Set
% Create a new requirements set file
rs1 = slreq.new('C:\MATLAB\My_Requirements_Set_1.slreqx');

% Save the requirements set file
save(rs1);

% Close the requirements set file
close(rs1);

 close

3-27

See Also
slreq.ReqSet

Introduced in R2018a

3 Methods — Alphabetical List

3-28

createReferences
Create read-only references to requirement items in third-party documents

Syntax
createReferences(rs, pathToFile, Name, Value)
createReferences(rs, reqFormat, Name, Value)

Description
createReferences(rs, pathToFile, Name, Value) creates read-only references
to requirements content in an external document at pathToFile by using additional
Name, Value arguments to specify import options.

createReferences(rs, reqFormat, Name, Value) creates read-only references to
requirements content in an external document corresponding to the specified registered
document type specified by reqFormat by using additional Name, Value arguments to
specify import options.

Input Arguments
rs — Requirements set file
slreq.ReqSet object

Requirements set file, specified as a slreq.ReqSet object.

pathToFile — File path
character vector

Path to the requirements document.
Example: 'C:\MATLAB\System_Requirements.docx'

reqFormat — Registered document type label
character vector

 createReferences

3-29

Custom registered document type label that you create by using a Custom Document
Type extension API.
Example: 'linktype_rmi_doors'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'columns', '[1 8]', 'RichText', true

ReqSet — Requirements Set
slreq.ReqSet object

The name of the existing requirements set that you import references to requirements
into, specified as the comma-separated pair of 'ReqSet' and a valid requirements set file
name.
Example: 'ReqSet', 'My_Requirements_Set'

RichText — Requirements content imported as rich text
false (default) | true

Option to import requirements content as rich text, specified as the comma-separated
pair consisting of 'RichText' and true or false.
Example: 'RichText', true

bookmarks — Use custom bookmarks in Microsoft Word and Microsoft Excel
true | false

Option to use custom bookmarks in Microsoft Word documents and Microsoft Excel
spreadsheets to import requirements content, specified as the comma-separated pair
consisting of 'bookmarks' and true or false.
Example: 'bookmarks', false

match — Regular expression
character vector

3 Methods — Alphabetical List

3-30

Import requirements by using regular expression pattern matching, specified as the
comma-separated pair consisting of 'match' and a regular expression pattern.
Example: 'match', '^REQ\d+'

columns — Range of columns
double array

Range of columns to import. This option is applicable only for Microsoft Excel
spreadsheets.
Example: 'columns', [1 6]

rows — Range of rows
double array

Range of rows to import. This option is applicable only for Microsoft Excel spreadsheets.
Example: 'rows', [3 35]

attributes — Attribute names
cell array

Attribute names to import, specified as a cell array.

Note When importing requirements from a Microsoft Excel spreadsheet, the length of
this cell array must match the number of columns that you specified for import by using
the 'columns' option.

Example: 'attributes', {'Test Status', 'Test Procedure'}

idColumn — ID Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the ID field in
the requirements set.
Example: 'idColumn', 1

summaryColumn — Summary Column
double

 createReferences

3-31

Column in the Microsoft Excel spreadsheet that you want to correspond to the Summary
field in the requirements set.
Example: 'summaryColumn', 4

keywordsColumn — Keywords Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Keywords
field in the requirements set.
Example: 'keywordsColumn', 3

descriptionColumn — Description Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the
Description field in the requirements set.
Example: 'descriptionColumn', 2

rationaleColumn — Rationale Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Rationale
field in the requirements set.
Example: 'rationaleColumn', 5

Examples

Create Read-Only References to Requirements in Microsoft
Office Documents
% Create a new requirements set and save it

rs = slreq.new('newReqSet');
save(rs);

% Create read-only rich text references to requirements
% in a Word document
createReferences(rs, 'C:\Work\Requirements_Spec.docx', ...

3 Methods — Alphabetical List

3-32

'RichText', true);

% Create read-only plain text references to requirements
% in an Excel spreadsheet
createReferences(rs, 'C:\Work\Design_Spec.xlsx', ...
'columns', [2 6], 'rows', [3 32], 'idColumn', 2, ...
'summaryColumn', 3);

See Also
slreq.Reference | slreq.ReqSet | slreq.import

Introduced in R2018a

 createReferences

3-33

find
Find requirements in requirements set that have matching attribute values

Syntax
myReq = find(rs, 'PropertyName', 'PropertyValue')

Description
myReq = find(rs, 'PropertyName', 'PropertyValue') finds and returns an
slreq.Requirement object myReq in the requirements set rs specified by the
properties matching PropertyName and PropertyValue.

Input Arguments
rs — Requirements set file
slreq.ReqSet object

Requirements set file, specified as a slreq.ReqSet object.

Output Arguments
myReq — Requirement object
slreq.Requirement object

Requirement, returned as an slreq.Requirement object.

3 Methods — Alphabetical List

3-34

Examples

Find Requirements That Have Matching Attribute Values
% Load a requirements set file
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

% Find all editable requirements in the requirement set
allReqs = find(rs, 'Type', 'Requirement');

% Find all referenced requirements in the requirement set
allRefs = find(rs, 'Type', 'Reference');

% Find all requirements with a certain ID
matchedReqs = find(rs, 'ID', 'R1.1');

See Also
slreq.ReqSet | slreq.find

Introduced in R2018a

 find

3-35

importFromDocument
Import editable requirements from external documents

Syntax
importFromDocument(rs, pathToFile, Name, Value)

Description
importFromDocument(rs, pathToFile, Name, Value) imports editable
requirements with contents duplicated from an external document at pathToFile using
by additional Name, Value arguments to specify import options.

Input Arguments
rs — Requirements set file
slreq.ReqSet object

Requirements set file, specified as a slreq.ReqSet object.

pathToFile — File path
character vector

Path to the requirements document that you want to import editable requirements from.
Example: 'C:\MATLAB\System_Requirements.docx'

ReqSet — Requirements Set
character vector

The name for the existing requirements set that you import requirements into, specified
as a character vector.
Example: 'ReqSet', 'My_Requirements_Set'

3 Methods — Alphabetical List

3-36

RichText — Option to import rich text requirements
false (default) | true

Option to import requirements as rich text, specified as a Boolean value.
Example: 'RichText', true

bookmarks — Option to import requirements using bookmarks
false | true

Option to import requirements content using user-defined bookmarks. This value is true
by default for Microsoft Word documents and false by default for Microsoft Excel
spreadsheets.
Example: 'bookmarks', false

match — Regular expression pattern
character vector

Regular expression pattern for ID search in Microsoft Office documents.
Example: 'match', '^REQ\d+'

attributes — Attribute names
cell array

Attribute names to import, specified as a cell array.

Note When importing requirements from a Microsoft Excel spreadsheet, the length of
this cell array must match the number of columns specified for import using the
'columns' argument.

Example: 'attributes', {'Test Status', 'Test Procedure'}

Pairs for Microsoft Excel Spreadsheets

columns — Range of columns
double array

Range of columns to import, specified as a double array.
Example: 'columns', [1 6]

 importFromDocument

3-37

rows — Range of rows
double array

Range of rows to import, specified as a double array.
Example: 'rows', [3 35]

idColumn — ID Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the ID field in
your requirements set, specified as a double.
Example: 'idColumn', 1

summaryColumn — Summary Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Summary
field in your requirements set, specified as a double.
Example: 'summaryColumn', 4

keywordsColumn — Keywords Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Keywords
field in your requirements set, specified as a double.
Example: 'keywordsColumn', 3

descriptionColumn — Description Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the
Description field in your requirements set, specified as a double.
Example: 'descriptionColumn', 2

rationaleColumn — Rationale Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Rationale
field in your requirements set, specified as a double.

3 Methods — Alphabetical List

3-38

Example: 'rationaleColumn', 5

Examples

Import Editable Requirements from Microsoft Office
Documents
% Create a new requirements set and save it
rs = slreq.new('newReqSet');
save(rs);

% Import editable requirements as rich text from a Word document
importFromDocument(rs, 'C:\Work\Requirements_Spec.docx', ...
 'RichText', true);

% Import editable requirements from an Excel spreadsheet
importFromDocument(rs, 'C:\Work\Design_Spec.xlsx', ...
'columns', [2 6], 'rows', [3 32], 'idColumn', 2, ...
'summaryColumn', 3);

See Also
createReferences | slreq.ReqSet

Introduced in R2018a

 importFromDocument

3-39

save
Save a requirements set

Syntax
save(rs)
save(rs, filePath)

Description
save(rs) saves a requirements set by using its file name.

save(rs, filePath) saves a requirements set and updates its Name and Filename
properties.

Input Arguments
rs — Requirements set file
slreq.ReqSet object

Requirements set file, specified as a slreq.ReqSet object.

filePath — File name and path
character vector

The file name and path of the requirements set, specified as a character vector.
Example: 'C:\MATLAB\myReqSet.slreqx'

3 Methods — Alphabetical List

3-40

Examples

Save Requirements Set File
% Create the requirements set file
rs = slreq.new('C:\MATLAB\My Requirements Set.slreqx');

% Save the requirements set file
save(rs);

% Save the requirements set file as another requirements set file
save(rs, 'C:\MATLAB\Another Requirements Set.slreqx');

See Also
slreq.ReqSet

Introduced in R2018a

 save

3-41

add
Add requirement to requirements set

Syntax
req = add(reqObj, 'PropertyName', PropertyValue)

Description
req = add(reqObj, 'PropertyName', PropertyValue) adds a requirement req
to a requirements object reqObj with properties and custom attributes specified by
PropertyName and PropertyValue.

Input Arguments
reqObj — Requirements object
slreq.ReqSet object | slreq.Requirement object

Requirements set or requirement objects, specified as an slreq.ReqSet or as an
slreq.Requirementobject.

Output Arguments
req — Requirement
slreq.Requirement object

The requirement that was added, returned as an slreq.Requirement object.

3 Methods — Alphabetical List

3-42

Examples

Add a Requirement to a Requirements Set
% Load a requirements set file

rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

% Add a top-level requirement to the requirements set
req1 = add(rs, 'Id', '5', 'Summary', 'Additional Requirement');

% Add a child requirement to the requirement req1
req2 = add(req1, 'Id', '5.1', 'Summary', 'Additional Child Requirement');

See Also
slreq.ReqSet | slreq.Requirement

Introduced in R2018a

 add

3-43

children
Find child requirements of a requirement

Syntax
childReqs = children(req)

Description
childReqs = children(req) returns the child requirements childReqs of the
slreq.Requirement object req.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement specified as an slreq.Requirement object.

Output Arguments
childReqs — Child requirements
slreq.Requirement object | slreq.Requirement object array

The child requirements belonging to the requirement req, returned as
slreq.Requirement objects.

3 Methods — Alphabetical List

3-44

Examples

Find Child Requirements
% Load a requirements set file and add three new requirements

rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
req1 = add(rs, 'Id', '5', 'Summary' , 'Additional Requirement');
req2 = add(req1, 'Id', '5.1', 'Summary', 'Additional Child Requirement 1');
req3 = add(req1, 'Id', '5.2', 'Summary', 'Additional Child Requirement 2');

% Find the children of req1
childReqs = children(req1);

childReqs =

 1×2 Requirement array with properties:

 Id
 Summary
 Keywords
 Description
 Rationale
 SID
 CreatedBy
 CreatedOn
 ModifiedBy
 ModifiedOn
 FileRevision
 Comments

See Also
parent | slreq.ReqSet | slreq.Requirement

Introduced in R2018a

 children

3-45

demote
Demote requirements

Syntax
deomote(req)

Description
deomote(req) demotes the slreq.Requirement object req one level down in the
hierarchy.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement specified as an slreq.Requirement object.

Examples

Demote Requirements
% Load a requirements set file and add two new requirements
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
req1 = add(rs, 'Id', '5', 'Summary' , 'Additional Requirement');
req2 = add(req1, 'Id', '5.1', 'Summary' , 'Child Requirement');

% Demote req2
demote(req2);

% Find the parent of req2
parentReq = parent(req2);

3 Methods — Alphabetical List

3-46

parentReq =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 6
 Dirty: 1
 CustomAttributeNames: {}

See Also
promote | slreq.ReqSet | slreq.Requirement

Introduced in R2018a

 demote

3-47

find
Find requirements that have matching attribute values

Syntax
reqs = find(rs, 'PropertyName', PropertyValue)

Description
reqs = find(rs, 'PropertyName', PropertyValue) returns a requirement or set
of requirements reqs in the requirements set rs specified by the properties that match
PropertyName and PropertyValue.

Input Arguments
rs — Requirements set
slreq.ReqSet object

Requirements set specified as an slreq.ReqSet object.

Output Arguments
reqs — Requirements
slreq.Requirement object | slreq.Requirement object array

Requirements, returned as slreq.Requirement objects.

3 Methods — Alphabetical List

3-48

Examples

Find Requirements That Have Matching Attribute Values
% Load a requirements set file
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

% Find all editable requirements with ID R1.1 in the requirements set
matchedReqs = find(rs, 'Type', 'Requirement', 'ID', 'R1.1');

See Also
slreq.Requirement | slreq.find

Introduced in R2018a

 find

3-49

getAttribute
Get requirement attributes

Syntax
val = getAttribute(req, propertyName)

Description
val = getAttribute(req, propertyName) gets a requirement property that is
specified by propertyName.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement specified as an slreq.Requirement object.

propertyName — Requirement property
character vector

Requirement property name.
Example: 'SID', 'CreatedOn', 'Summary'

Examples

Get Requirement Attributes
% Load a requirements set file and get the handle to one requirement
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
req1 = find(rs, 'Type', 'Requirement', 'ID', 'R1.1');

3 Methods — Alphabetical List

3-50

% Get the Summary of req1
summaryReq1 = getAttribute(req1, 'Summary')

summaryReq1 =

 'Functional Requirements'

See Also
setAttribute | slreq.Requirement

Introduced in R2018a

 getAttribute

3-51

parent
Find parent item of requirement

Syntax
parentObj = parent(req)

Description
parentObj = parent(req) returns the parent object parentObj of the
slreq.Requirement object req.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement specified as an slreq.Requirement object.

Output Arguments
parentObj — Parent object
slreq.Requirement object | slreq.ReqSet object

The parent of the requirement req, returned as an slreq.Requirement object or as an
slreq.ReqSet object.

3 Methods — Alphabetical List

3-52

Examples

Find Parent Objects of Requirements
% Load a requirements set file and add two new requirements

rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
req1 = add(rs, 'Id', '5', 'Summary' , 'Additional Requirement');
req2 = add(req1, 'Id', '5.1', 'Summary' , 'Additional Child Requirement');

% Find the parent of req2
parentReq1 = parent(req2)

parentReq1 =

 Requirement with properties:

 Id: '5'
 Summary: 'Additional Requirement'
 Keywords: [0×0 char]
 Description: ''
 Rationale: ''
 SID: 10
 CreatedBy: 'John Doe'
 CreatedOn: 05-Oct-2007 16:09:38
 ModifiedBy: 'Jane Doe'
 ModifiedOn: 21-Dec-2016 11:10:05
 Comments: [0×0 struct]

% Find the parent of req1
parentReq2 = parent(req1)

parentReq2 =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 6
 Dirty: 1
 CustomAttributeNames: {}

 parent

3-53

See Also
children | slreq.ReqSet | slreq.Requirement

Introduced in R2018a

3 Methods — Alphabetical List

3-54

promote
Promote requirements

Syntax
promote(req)

Description
promote(req) promotes the slreq.Requirement object req one level up in the
hierarchy.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement specified as an slreq.Requirement object.

Examples

Find Requirements with Matching Attribute Values
% Load a requirements set file and add two new requirements
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
req1 = add(rs, 'Id', '5', 'Summary' , 'Additional Requirement');
req2 = add(req1, 'Id', '5.1', 'Summary' , 'Child Requirement');

% Promote req2
promote(req2);

% Find the parent of req2
parentReq = parent(req2);

 promote

3-55

parentReq =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 6
 Dirty: 1
 CustomAttributeNames: {}

See Also
demote | slreq.ReqSet | slreq.Requirement

Introduced in R2018a

3 Methods — Alphabetical List

3-56

reqSet
Return parent requirements set

Syntax
rsout = reqSet(req)

Description
rsout = reqSet(req) returns the parent requirements set rsout to which the
requirement req belongs.

Input Arguments
req — Requirement object
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

rsout — Parent requirements set
slreq.ReqSet object

The parent requirements set of the requirement req, returned as an slreq.ReqSet
object.

Examples

Query Requirements Set Information
% Load a new requirements set file and select one requirement
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
allReqs = find(rs, 'Type', 'Requirement');
req = allReqs(1);

 reqSet

3-57

% Query which requirements set req belongs to
reqSet(req);

ans =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 63
 Dirty: 0
 CustomAttributeNames: {}

See Also
parent | slreq.ReqSet | slreq.Requirement

Introduced in R2018a

3 Methods — Alphabetical List

3-58

setAttribute
Set requirement attributes

Syntax
setAttribute(req, propertyName, propertyValue)

Description
setAttribute(req, propertyName, propertyValue) sets a requirement property.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement specified as an slreq.Requirement object.

propertyName — Requirement property
character vector

Requirement property name.
Example: 'SID', 'CreatedOn', 'Summary'

propertyValue — Requirement property value
character vector

Requirement property value.
Example: 'Test Requirement', 'R1.3.1'

 setAttribute

3-59

Examples

Set Requirement Attributes
% Load a requirements set file and get the handle to one requirement
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
req1 = find(rs, 'Type', 'Requirement', 'ID', 'R2.1');

% Set the Summary of req1
setAttribute(req1, 'Summary', 'Controller Requirement');

req1

req1 =

 Requirement with properties:

 Id: 'R2.1'
 Summary: 'Controller Requirement'
 Keywords: [0×0 char]
 Description: ''
 Rationale: ''
 SID: 21
 CreatedBy: 'Jane Doe'
 CreatedOn: 27-Feb-2014 10:15:38
 ModifiedBy: 'John Doe'
 ModifiedOn: 02-Aug-2017 13:49:40
 FileRevision: 43
 Dirty: 1
 Comments: [0×0 struct]

See Also
getAttribute | slreq.ReqSet | slreq.Requirement

Introduced in R2018a

3 Methods — Alphabetical List

3-60

Block Reference

4

System Requirements
List system requirements in Simulink models

Library
Simulink Requirements

Description
The System Requirements block lists the system-level requirements associated with a
model or subsystem. This block is dynamically populated. It displays system requirements
associated with the level of hierarchy in which the block appears in the model. It does not
list requirements associated with individual blocks in the model. To ensure that all
requirement links are listed in the System Requirements block:

1 Right-click the background of your model.
2 Select Requirements at This Level.
3 From the top of the context menu, verify that all the requirements you want to list

appear in the System Requirements block.

You can place this block anywhere in your model. It does not connect to other Simulink
blocks. You can have only one System Requirements block in a given subsystem.

When you insert this block into your Simulink model, it is populated with the system
requirements, as shown in the Airflow Calculation subsystem of the
slvnvdemo_fuelsys_officereq example.

4 Block Reference

4-2

Each of the listed requirements is an active link to the requirements document. When you
double-click a requirement label, the associated requirements document opens in its
editor window, scrolled to the target location.

Parameters
Block Title

The title of the system requirements list in the model. The default title is System
Requirements. You can enter a customized title, for example, Engine
Requirements.

Introduced before R2006a

 System Requirements

4-3

